하드 디스크 드라이브 회전수 변화가 드라이브 내 나노 오염 입자 발생에 미치는 영향

Other Titles
Effect of Disk Rotational Speed on Contamination Nano Particles Generated in a Hard Disk Drive
Authors
황정호배귀남이대영
Issue Date
2004-08
Publisher
대한기계학회
Citation
대한기계학회논문집 B, v.28, no.8, pp.976 - 983
Abstract
In high-density hard disk drives, the slider should be made to fly close to the magnetic recording disk to generate better signal resolution and at an increasingly high velocity to achieve better data rate. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation. Contamination particles in the hard disk drive can cause serious problems including slider crash and thermal asperities. We investigated the number and the sizes of particles generated in the hard disk drive, operating at increasing disk rotational speeds, in the CSS mode. CNC (condensation nucleus counter) and PSS (particle size selector) were used for this investigation. In addition, we examined the particle components by using SEM (scanning electron microscopes), AES (auger electron spectroscopy), and TOF-SIMS (time of flight-secondary ions mass spectrometry). The increasing disk rotational speed directly affected the particle generation by slider disk interaction. The number of particles that were generated increased with the disk rotational speed. The particle generation rate increased rapidly at motor speeds above 8000 rpm. This increase may be due to the increased slider disk interaction. Particle sizes ranged from 14 to 200 nm. The particles generated by slider disk interaction came from the lubricant on the disk, coating layer of the disk, and also slider surface.
Keywords
Hard Disk Drive (하드 디스크 드라이브); Slider Disk Interaction(슬라이더 디스크 상호작용); Nano Particle Generation(나노입자발생); Particle Contamination(입자오염)
ISSN
1226-4881
URI
https://pubs.kist.re.kr/handle/201004/137350
Appears in Collections:
KIST Article > 2004
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE