Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite

Authors
Park, JSChoi, HCAhn, KHKang, JW
Issue Date
2004-04
Publisher
TAYLOR & FRANCIS INC
Citation
OZONE-SCIENCE & ENGINEERING, v.26, no.2, pp.141 - 151
Abstract
The oxidations of natural organic matter (NOM) and a model compound (p-chlorobenzoic acid) were characterized using ozonation and catalytic ozonation processes. In general, the catalytic ozonation showed better performance in the removal of organics tested in the study. The hydrophobic, transphilic, and hydrophilic NOM fractions were isolated using XAD-8 and -4 resins to evaluate the reaction characteristics. The catalytic ozonation in the presence of goethite accomplished the higher removal of NOM with simultaneous reduction of the three fractions than the ozonation which removed the hydrophobic portion only. The analysis of discrete size distributions of NOM revealed that ozonation yielded a removal of >1,000 MW and an increase of <1,000 MW, whereas all molecular weight fractions reduced after catalytic ozonation. The concentrations of model compound and aqueous and gaseous ozone were monitored during the oxidations, and efficiencies were compared for cases in the absence and presence of iron oxide (FeOOH).
Keywords
HYDROGEN-PEROXIDE; OZONATION; WATER; DEGRADATION; OXIDATION; HYDROGEN-PEROXIDE; OZONATION; WATER; DEGRADATION; OXIDATION; ozone; catalytic oxidation; natural organic matter; p-chlorobenzoic acid; goethite; iron oxide
ISSN
0191-9512
URI
https://pubs.kist.re.kr/handle/201004/137730
DOI
10.1080/01919510490439285
Appears in Collections:
KIST Article > 2004
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE