Electrical and optical characterizations of self-assembled quantum dots formed by the atomic layer epitaxy technique

Authors
Park, YMPark, YJKim, KMShin, JCSong, JDLee, JIYoo, KH
Issue Date
2004-01-01
Publisher
AMER INST PHYSICS
Citation
JOURNAL OF APPLIED PHYSICS, v.95, no.1, pp.123 - 127
Abstract
We investigated the electrical and optical properties of InGaAs self-assembled quantum dots grown using the atomic layer epitaxy (ALE) technique. Dots-in-a-well structures were grown by alternately supplying InAs and GaAs sources on an InGaAs layer and covering with another InGaAs layer. Three samples produced with different numbers of cycles of alternate InAs/GaAs supply were characterized by capacitance-voltage and photoluminescence (PL) measurements. For the ten cycle dots-in-a-well structure, a strong zero-dimensional electron confinement was observed even at room temperature. On the other hand, for the five-cycle structure, the PL results indicate that the InGaAs quantum well structure coexists unstably with premature quantum dots. By comparing the results for samples with different numbers of cycles, we suggest that an ALE dots-in-a-well structure can be formed by the aggregation of In and Ga atoms incorporated into the InGaAs quantum well layer when the number of cycles exceeds the critical number of seven cycles. (C) 2004 American Institute of Physics.
Keywords
TEMPERATURE-DEPENDENCE; PHOTOLUMINESCENCE; GAAS; SPECTROSCOPY; ISLANDS; EMISSION; PROFILE; GROWTH; WELL; TEMPERATURE-DEPENDENCE; PHOTOLUMINESCENCE; GAAS; SPECTROSCOPY; ISLANDS; EMISSION; PROFILE; GROWTH; WELL; quantum dots; atomic layer epitaxy; photolminescence; capacitance-voltage; carier confinement
ISSN
0021-8979
URI
https://pubs.kist.re.kr/handle/201004/137946
DOI
10.1063/1.1633348
Appears in Collections:
KIST Article > 2004
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE