Full metadata record

DC Field Value Language
dc.contributor.authorCha, JH-
dc.contributor.authorHan, JI-
dc.contributor.authorChoi, Y-
dc.contributor.authorYoon, DS-
dc.contributor.authorOh, KW-
dc.contributor.authorLim, G-
dc.date.accessioned2024-01-21T08:15:13Z-
dc.date.available2024-01-21T08:15:13Z-
dc.date.created2021-09-01-
dc.date.issued2003-09-
dc.identifier.issn0956-5663-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/138307-
dc.description.abstractWe report the use of poly(thiophen-3-yl-acetic acid 1,3-dioxo-1,3-dihydro-isoindol-2-yl ester (PTAE) for application to electrochemical hybridization sensor. A synthetic route for the thiophen-3-yl-acetic acid 1,3-dioxo-1,3-dihydro-isoindol-2-yl ester (TAE) is described, which is used as a monomer of conducting polymer sensor. A direct chemical substitution of probe oligonucleotide to good leaving group site in the PTAE is carried out on the conducting polymer film. A biological recognition can be monitored by comparison with the electrochemical signal (cyclic voltammogram) of single and double strand state oligonucleotide. The sensitivity of the electrochemical sensor is 0.62 muA/nmole and the detection limit is 1 nmole. The oxidation current of double strand state oligonucleotide is a half of that of single strand, that is corresponding to the decrease of electrochemical activity of conducting polymer with increase of stiffness of side group of the polymer. The oxidation current decreasing ratios of perfect matched and single nucleotide mismatched samples are 52 and 25-30%, respectively. The more decreasing ratio is attributable to the more steric hindrance of single nucleotide mismatched sample. (C) 2003 Elsevier Science B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER ADVANCED TECHNOLOGY-
dc.subjectMOLECULAR RECOGNITION-
dc.subjectCOATED ELECTRODES-
dc.subjectREACTIVE GROUPS-
dc.subjectOLIGONUCLEOTIDE-
dc.subjectPOLYPYRROLE-
dc.subjectFUNCTIONALIZATION-
dc.subjectPOLYTHIOPHENES-
dc.subjectSURFACES-
dc.subjectBEARING-
dc.subjectPROBES-
dc.titleDNA hybridization electrochemical sensor using conducting polymer-
dc.typeArticle-
dc.identifier.doi10.1016/S0956-5663(03)00088-5-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIOSENSORS & BIOELECTRONICS, v.18, no.10, pp.1241 - 1247-
dc.citation.titleBIOSENSORS & BIOELECTRONICS-
dc.citation.volume18-
dc.citation.number10-
dc.citation.startPage1241-
dc.citation.endPage1247-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000184424600006-
dc.relation.journalWebOfScienceCategoryBiophysics-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalResearchAreaBiophysics-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOLECULAR RECOGNITION-
dc.subject.keywordPlusCOATED ELECTRODES-
dc.subject.keywordPlusREACTIVE GROUPS-
dc.subject.keywordPlusOLIGONUCLEOTIDE-
dc.subject.keywordPlusPOLYPYRROLE-
dc.subject.keywordPlusFUNCTIONALIZATION-
dc.subject.keywordPlusPOLYTHIOPHENES-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusBEARING-
dc.subject.keywordPlusPROBES-
dc.subject.keywordAuthorelectrochemical hybridization sensor-
dc.subject.keywordAuthorconducting polymer-
Appears in Collections:
KIST Article > 2003
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE