Full metadata record

DC Field Value Language
dc.contributor.authorAhn, HK-
dc.contributor.authorCheong, O-
dc.contributor.authorShin, CS-
dc.date.accessioned2024-01-21T09:03:05Z-
dc.date.available2024-01-21T09:03:05Z-
dc.date.created2021-09-03-
dc.date.issued2003-05-
dc.identifier.issn0925-7721-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/138625-
dc.description.abstractIn the Euclidean traveling salesman and buyers problem (TSBP), we are given a set of convex regions in d-dimensional space, and we wish to find a minimum-cost tour that visits all the regions. The cost of a tour depends on the length of the tour itself and on the distance that buyers within each region need to travel to meet the salesman. We show that constant-factor approximations to the TSBP and several similar problems can be obtained by visiting the centers of the smallest enclosing spheres of the regions. (C) 2002 Elsevier Science B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleBuilding bridges between convex regions-
dc.typeArticle-
dc.identifier.doi10.1016/S0925-7721(02)00135-9-
dc.description.journalClass1-
dc.identifier.bibliographicCitationComputational Geometry: Theory and Applications, v.25, no.1-2, pp.161 - 170-
dc.citation.titleComputational Geometry: Theory and Applications-
dc.citation.volume25-
dc.citation.number1-2-
dc.citation.startPage161-
dc.citation.endPage170-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000181567300011-
dc.identifier.scopusid2-s2.0-84867949543-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.relation.journalResearchAreaMathematics-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusALGORITHMS-
dc.subject.keywordAuthoreuclidean TSP-
dc.subject.keywordAuthorTSP with neighborhoods-
dc.subject.keywordAuthortraveling salesman and buyers problem-
dc.subject.keywordAuthorapproximation algorithm-
Appears in Collections:
KIST Article > 2003
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE