Full metadata record

DC Field Value Language
dc.contributor.authorLee, W-
dc.contributor.authorBatchelor, B-
dc.date.accessioned2024-01-21T09:36:46Z-
dc.date.available2024-01-21T09:36:46Z-
dc.date.created2021-09-01-
dc.date.issued2002-12-15-
dc.identifier.issn0013-936X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/138963-
dc.description.abstractAbiotic reductive dechlorination of chlorinated ethylenes by the sulfate form of green rust (GR(SO4)) was examined in batch reactors. Dechlorination kinetics were described by a modified Langmuir-Hinshelwood model. The rate constant for reductive dechlorination of chlorinated ethylenes at reactive GR(SO4) surfaces,was' in the range of 0.592 (+/- 4.4%) to 1.59 (+/- 6.3%) day(-1). The specific reductive capacity of GR(SO4) for target organics was in the range of 9.86 (+/- 10.1%) to 18.0.(+/- 4.3%) muM/g and sorption coefficient was in the range of 0.53 (+/- 2.46/6) to 1.22 (+/- 4.3%) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for chlorinated ethylenes by GR(SO4) were 3.4 to 8.2 times greater than those by pyrite. Chlorinated ethylenes were mainly transformed to acetylene, and no detectable amounts of chlorinated intermediates were observed The rate constants for the reductive dechlorination of trichloroethylene (TCE) increased as pH increased (6.8 to 10.1) but were independent of solid concentration and initial TCE concentration. Magnetite and/ or maghemite were produced by the oxidation of GR(SO4) by TCE. These findings are. relevant to the understanding of the role of abiotic reductive dechlorination during natural attenuation in environments that contain GR(SO4).-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectHOMOGENEOUS AQUEOUS-SOLUTION-
dc.subjectCARBON-TETRACHLORIDE-
dc.subjectMEDIATED REDUCTION-
dc.subjectACETYLENE REACTION-
dc.subjectKINETICS-
dc.subjectSULFIDE-
dc.subjectTETRACHLOROETHYLENE-
dc.subjectTRANSFORMATION-
dc.subjectTRICHLOROETHYLENE-
dc.subjectPATHWAYS-
dc.titleAbiotic, reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust-
dc.typeArticle-
dc.identifier.doi10.1021/es0258374-
dc.description.journalClass1-
dc.identifier.bibliographicCitationENVIRONMENTAL SCIENCE & TECHNOLOGY, v.36, no.24, pp.5348 - 5354-
dc.citation.titleENVIRONMENTAL SCIENCE & TECHNOLOGY-
dc.citation.volume36-
dc.citation.number24-
dc.citation.startPage5348-
dc.citation.endPage5354-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000179833400010-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusHOMOGENEOUS AQUEOUS-SOLUTION-
dc.subject.keywordPlusCARBON-TETRACHLORIDE-
dc.subject.keywordPlusMEDIATED REDUCTION-
dc.subject.keywordPlusACETYLENE REACTION-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusSULFIDE-
dc.subject.keywordPlusTETRACHLOROETHYLENE-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusTRICHLOROETHYLENE-
dc.subject.keywordPlusPATHWAYS-
dc.subject.keywordAuthorReductive dechlorination-
Appears in Collections:
KIST Article > 2002
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE