Full metadata record

DC Field Value Language
dc.contributor.authorPark, SN-
dc.contributor.authorKim, H-
dc.contributor.authorKim, K-
dc.contributor.authorLee, JA-
dc.contributor.authorLho, DS-
dc.date.accessioned2024-01-21T15:36:54Z-
dc.date.available2024-01-21T15:36:54Z-
dc.date.created2021-09-05-
dc.date.issued1999-04-15-
dc.identifier.issn1463-9076-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/142246-
dc.description.abstract2-Naphthol can be used to measure the pH of aqueous solutions if the acid dissociation constant for 2-naphthol is known at a given temperature. The temperature dependence of the acid dissociation constant for 2-naphthol was spectroscopically determined in berate buffer solutions under vapor-saturated pressure up to 200 degrees C. The result was pK(i) = -34.97 + 2947/T + 6.086 ln(T) where T is in Kelvin. The pH of carbonate buffer solutions was measured by obtaining the W-visible spectra of 2-naphthol and utilized to determine the second dissociation constant of carbonic acid up to 175 degrees C under vapor-saturated pressure. The result was pK(2) = 4201.48 - 229 200/T 661.21 ln(T) + 0647.53T + 134 98 200/T-2 where T is in Kelvin. By using the temperature dependence of the dissociation constant, the isocoulombic reaction was studied. The plot of - log K-isoc against 1/T was approximately linear in the temperature range studied. The linearity can be used to predict the dissociation constant by the extrapolation of -log K-isoc to higher temperatures.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectSPECTROPHOTOMETRIC DETERMINATION-
dc.subjectNACL MEDIA-
dc.subjectTHERMODYNAMICS-
dc.subjectCHLORIDE-
dc.subjectIONIZATION-
dc.subjectMIXTURES-
dc.subjectCALCITE-
dc.subjectWATER-
dc.subjectELECTROLYTES-
dc.subjectFORMULATION-
dc.titleSpectroscopic measurement of the acid dissociation constant of 2-naphthol and the second dissociation constant of carbonic acid at elevated temperatures-
dc.typeArticle-
dc.identifier.doi10.1039/a900248k-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.1, no.8, pp.1893 - 1898-
dc.citation.titlePHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.citation.volume1-
dc.citation.number8-
dc.citation.startPage1893-
dc.citation.endPage1898-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000080024800032-
dc.identifier.scopusid2-s2.0-0033561567-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSPECTROPHOTOMETRIC DETERMINATION-
dc.subject.keywordPlusNACL MEDIA-
dc.subject.keywordPlusTHERMODYNAMICS-
dc.subject.keywordPlusCHLORIDE-
dc.subject.keywordPlusIONIZATION-
dc.subject.keywordPlusMIXTURES-
dc.subject.keywordPlusCALCITE-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordPlusFORMULATION-
dc.subject.keywordAuthorspectroscopic measurement-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE