Full metadata record

DC Field Value Language
dc.contributor.authorKim, SY-
dc.contributor.authorKang, BH-
dc.contributor.authorJaluria, Y-
dc.date.accessioned2024-01-21T17:01:19Z-
dc.date.available2024-01-21T17:01:19Z-
dc.date.created2021-09-03-
dc.date.issued1998-07-
dc.identifier.issn1040-7782-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/142983-
dc.description.abstractThe characteristics of a pulsating flow and the associated thermal transport from two heated blocks representing energy dissipating electronic components with different heights, in a channel have been numerically investigated. At the channel inlet a pulsating sinusoidal flow is imposed at a uniform temperature. The surfaces of the blocks are taken at a constant higher temperature. The channel walls are assumed to be adiabatic. Results on the time-dependent flow and temperature field are obtained and averaged over a cycle of pulsation. The effect of the important governing parameters, such as the Strouhal number and the dimensionless heights of the blocks, on the flow and the heat transfer is investigated in detail. The results indicate that the recirculating flow behind the second block; as well as that in the interblock region, are substantially affected by the pulsation frequency and the heights of the blocks. These, in turn, have a strong influence on the thermal transport from the heated elements to the pulsating flow. it is found that a larger height of the first block, as compared to that of the second one, enhances heat transfer rare in pulsating flow, whereas the effect is just the reverse in steady-flow. The frequency at which the enhancement is maximum is determined. The effect on the pressure is also studied The present results are compared with those ill the literature for a steady nonpulsating flow and the effect of pulsation on the overall transport process is determined.-
dc.languageEnglish-
dc.publisherHEMISPHERE PUBL CORP-
dc.subjectTRANSFER ENHANCEMENT-
dc.subjectMIXED CONVECTION-
dc.subjectGROOVED CHANNELS-
dc.subjectINCOMPRESSIBLE-FLOW-
dc.subjectOSCILLATORY FLOW-
dc.subjectCYLINDER-
dc.subjectTRANSPORT-
dc.titleThermal interaction between isolated heated electronic components in pulsating channel flow-
dc.typeArticle-
dc.identifier.doi10.1080/10407789808913974-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNUMERICAL HEAT TRANSFER PART A-APPLICATIONS, v.34, no.1, pp.1 - 21-
dc.citation.titleNUMERICAL HEAT TRANSFER PART A-APPLICATIONS-
dc.citation.volume34-
dc.citation.number1-
dc.citation.startPage1-
dc.citation.endPage21-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000074521000002-
dc.identifier.scopusid2-s2.0-0032119611-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaMechanics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCYLINDER-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusTRANSFER ENHANCEMENT-
dc.subject.keywordPlusMIXED CONVECTION-
dc.subject.keywordPlusGROOVED CHANNELS-
dc.subject.keywordPlusINCOMPRESSIBLE-FLOW-
dc.subject.keywordPlusOSCILLATORY FLOW-
dc.subject.keywordAuthorThermal interaction-
dc.subject.keywordAuthorForced Convection-
dc.subject.keywordAuthorPulsating channel flow-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE