Full metadata record

DC Field Value Language
dc.contributor.authorAhn, SC-
dc.contributor.authorKim, YH-
dc.contributor.authorKwon, WH-
dc.date.accessioned2024-01-21T17:42:35Z-
dc.date.available2024-01-21T17:42:35Z-
dc.date.created2021-09-01-
dc.date.issued1998-01-
dc.identifier.issn1064-1246-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/143447-
dc.description.abstractIn this paper a fuzzy generalized predictive control (FGPC) for nonlinear plants is proposed. In the proposed method, the receding horizon control is applied to the control part, while fuzzy systems are used for the predictor part. It is suggested that the fuzzy predictor is time-varying affine with respect to input variables for easy computation of control inputs. Since the receding horizon control can be obtained only with a predictor instead of a plant model, the fuzzy predictor is obtained directly from input-output data without identifying a plant model. A modified parameter estimation algorithm is used for identifying the fuzzy predictor. The control inputs of the FGPC are computed by minimizing a receding horizon cost function with predicted plant outputs. The proposed controller has a similar architecture to the generalized predictive control (GPC) except for the predictor synthesis method, and thus could possess inherent good properties of the GPC. It is shown by computer simulation that the performance of the FGPC is satisfactory.-
dc.languageEnglish-
dc.publisherIOS PRESS-
dc.titleA fuzzy generalized predictive control using affine fuzzy predictors for nonlinear systems-
dc.typeArticle-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF INTELLIGENT & FUZZY SYSTEMS, v.6, no.2, pp.185 - 207-
dc.citation.titleJOURNAL OF INTELLIGENT & FUZZY SYSTEMS-
dc.citation.volume6-
dc.citation.number2-
dc.citation.startPage185-
dc.citation.endPage207-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000075494900002-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordAuthorFuzzy systems-
dc.subject.keywordAuthorpredictive control-
dc.subject.keywordAuthorGPC-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE