Full metadata record

DC Field Value Language
dc.contributor.authorChun, MS-
dc.contributor.authorPhillips, RJ-
dc.date.accessioned2024-01-21T18:32:38Z-
dc.date.available2024-01-21T18:32:38Z-
dc.date.created2021-09-01-
dc.date.issued1997-05-
dc.identifier.issn0001-1541-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/143835-
dc.description.abstractEquilibrium partitioning of spherical solutes between slit pores and bulk solution is investigated by the Gibbs ensemble Monte Carlo method. Two types of perturbations are performed in this simulation: a random displacement of solutes that ensures equilibrium within both bulk and pore regions, and random interchanges of solutes that equalize the interaction potentials between the two regions. To study the effects of electrostatic interactions, interaction energies between the solutes and pore walls and between pairs of solutes are evaluated by using a singularity method. Partition coefficients calculated for neutral solutes, which experience purely steric interactions, increase with increasing solute concentration and agree well with existing theoretical results. For pores and solutes of like charge, results for the limit of infinitely dilute solute concentration show a sharp decline in partition coefficient with decreasing ionic strength of solution. As the solute concentration increases the interplay of solute-wall and solute-solute interactions becomes increasingly important, and the partition coefficient increases accordingly. The density profiles indicate unambiguously that, whether solutes and pores are uncharged or of like charge, solute-solute interaction promotes enhanced concentrations near the wall, causing the partition coefficient to increase. Even at solute concentrations as low as 5%, effects of solute - solute interactions caused by electrostatic charge can more than compensate for sphere-wall repulsive interactions, indicating that concentration effects should be considered at least as important as electrostatic effects in partitioning phenomena.-
dc.languageEnglish-
dc.publisherAMER INST CHEMICAL ENGINEERS-
dc.subjectPHASE-EQUILIBRIA-
dc.subjectCOMPUTER-SIMULATION-
dc.subjectHYPERNETTED CHAIN-
dc.subjectINTEGRAL-EQUATION-
dc.subjectBULK SOLUTION-
dc.subjectMOLECULES-
dc.subjectMIXTURES-
dc.subjectFLUIDS-
dc.subjectEXTENSION-
dc.subjectFORCES-
dc.titleElectrostatic partitioning in slit pores by Gibbs ensemble Monte Carlo simulation-
dc.typeArticle-
dc.identifier.doi10.1002/aic.690430510-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAICHE JOURNAL, v.43, no.5, pp.1194 - 1203-
dc.citation.titleAICHE JOURNAL-
dc.citation.volume43-
dc.citation.number5-
dc.citation.startPage1194-
dc.citation.endPage1203-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosidA1997WX75900010-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusPHASE-EQUILIBRIA-
dc.subject.keywordPlusCOMPUTER-SIMULATION-
dc.subject.keywordPlusHYPERNETTED CHAIN-
dc.subject.keywordPlusINTEGRAL-EQUATION-
dc.subject.keywordPlusBULK SOLUTION-
dc.subject.keywordPlusMOLECULES-
dc.subject.keywordPlusMIXTURES-
dc.subject.keywordPlusFLUIDS-
dc.subject.keywordPlusEXTENSION-
dc.subject.keywordPlusFORCES-
dc.subject.keywordAuthorgibbs ensemble Monte Carlo-
dc.subject.keywordAuthorslit-pores-
dc.subject.keywordAuthorelectrostatic interaction-
dc.subject.keywordAuthorconcentration partitioning-
dc.subject.keywordAuthordebye thickness-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE