Full metadata record

DC Field Value Language
dc.contributor.authorChoi, JY-
dc.contributor.authorVanLandingham, HF-
dc.contributor.authorBingulac, S-
dc.date.accessioned2024-01-21T19:38:47Z-
dc.date.available2024-01-21T19:38:47Z-
dc.date.created2021-09-01-
dc.date.issued1996-04-
dc.identifier.issn1083-4419-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/144497-
dc.description.abstractThis paper combines a conventional method of multivariable system identification with a dynamic multi-layer perceptron (MLP) to achieve a constructive method of nonlinear system identification. The class of nonlinear systems is assumed to operate nominally around an equilibrium point in the neighborhood of which a linearized model exists to represent the system, although normal operation is not limited to the linear region. The result is an accurate discrete-time nonliner model, extended from a MIMO linear model, which captures the nonlinear behavior of the system.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectNETWORKS-
dc.titleA constructive approach for nonlinear system identification using multilayer perceptrons-
dc.typeArticle-
dc.identifier.doi10.1109/3477.485881-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, v.26, no.2, pp.307 - 312-
dc.citation.titleIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS-
dc.citation.volume26-
dc.citation.number2-
dc.citation.startPage307-
dc.citation.endPage312-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosidA1996UD02400009-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordAuthornonlinear system identification-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE