Full metadata record

DC Field Value Language
dc.contributor.authorKim, S.Y.-
dc.contributor.authorKang, B.H.-
dc.contributor.authorHyun, J.M.-
dc.date.accessioned2024-01-21T22:11:07Z-
dc.date.available2024-01-21T22:11:07Z-
dc.date.created2021-09-02-
dc.date.issued1994-01-
dc.identifier.issn0017-9310-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/145914-
dc.description.abstractA numerical study is made of heat transfer characteristics from forced pulsating flow in a channel filled with fluid-saturated porous media. The channel walls are assumed to be at uniform temperature. The Brinkman-Forchheimer-extended Darcy model is employed. The time-dependent, two-dimensional governing equations are solved by using finite-volume techniques. Numerical solutions are obtained for quasi-steady periodic states. Flow and temperature fields are examined over ranges of the principal parameters, i.e. the amplitude of flow pulsation A, the pulsation frequency parameter M [≡H( ω 2ν)1 2], the Darcy number Da (≡ K H2), the thermal conductivity ratio Rκ (≡ κeff κ), and the heat capacity ratio Rc {≡ (ρ{variant}Cp)eff [ε(ρ{variant}Cp)]}. The impact of pulsation is discernible in the cycle-averaged temperature distribution. In comparison with the case of non-pulsating flow, the presence of flow pulsation brings forth a reduction in heat transfer in the entrance region and an enhancement of heat transfer at moderate downstream regions. Farther downstream, the influence of pulsation is meager. The magnitudes of changes in heat transfer depend upon A, M, Da, Rκ, and Rc. The effect of pulsation on heat transfer between the channel wall and the fluid is more pronounced for small M and large A. Explicit influences of Da, Rκ, and Rc on the flow and heat transport characteristics are also scrutinized. ? 1994.-
dc.languageEnglish-
dc.subjectHeat Transfer-
dc.subjectPorous Media-Flow Through-
dc.subjectPulsating Flow-
dc.subjectChannel flow-
dc.subjectFinite element method-
dc.subjectMathematical models-
dc.subjectPorous materials-
dc.subjectPulsatile flow-
dc.subjectSpecific heat-
dc.subjectTemperature distribution-
dc.subjectThermal conductivity-
dc.subjectWall flow-
dc.subjectBrinkman-Forchheimer extended Darcy model-
dc.subjectDarcy number-
dc.subjectFinite volume method-
dc.subjectForced pulsating flow-
dc.subjectPulsation amplitude-
dc.subjectPulsation frequency-
dc.subjectHeat transfer-
dc.titleHeat transfer from pulsating flow in a channel filled with porous media-
dc.typeArticle-
dc.identifier.doi10.1016/0017-9310(94)90304-2-
dc.description.journalClass1-
dc.identifier.bibliographicCitationInternational Journal of Heat and Mass Transfer, v.37, no.14, pp.2025 - 2033-
dc.citation.titleInternational Journal of Heat and Mass Transfer-
dc.citation.volume37-
dc.citation.number14-
dc.citation.startPage2025-
dc.citation.endPage2033-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-0028495395-
dc.type.docTypeArticle-
dc.subject.keywordPlusHeat Transfer-
dc.subject.keywordPlusPorous Media-Flow Through-
dc.subject.keywordPlusPulsating Flow-
dc.subject.keywordPlusChannel flow-
dc.subject.keywordPlusFinite element method-
dc.subject.keywordPlusMathematical models-
dc.subject.keywordPlusPorous materials-
dc.subject.keywordPlusPulsatile flow-
dc.subject.keywordPlusSpecific heat-
dc.subject.keywordPlusTemperature distribution-
dc.subject.keywordPlusThermal conductivity-
dc.subject.keywordPlusWall flow-
dc.subject.keywordPlusBrinkman-Forchheimer extended Darcy model-
dc.subject.keywordPlusDarcy number-
dc.subject.keywordPlusFinite volume method-
dc.subject.keywordPlusForced pulsating flow-
dc.subject.keywordPlusPulsation amplitude-
dc.subject.keywordPlusPulsation frequency-
dc.subject.keywordPlusHeat transfer-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE