mRNA-HPV vaccine encoding E6 and E7 improves therapeutic potential for HPV-mediated cancers via subcutaneous immunization

Lee, SeonghyunYoon, HyunhoHong, Seol HeeKwon, Sung PilHong, Jung JooKwak, Hye WonPark, Hyeong­JunYoo, SoyeonBae, Seo­HyeonPark, Hyo­JungLee, JisunBang, Yoo­JinLee, Yu­SunKim, Jae­YongYoon, SubinRoh, GahyunCho, YoungranKim, YongkwanKim, DaegeunPark, Sang­InKim, Do­HyungLee, SowonOh, AyoungHa, DahyeonLee, Soo­YeonPark, MisungHwang, Eun­HaBae, GyuseoJeon, EunsuPark, Sung HyunChoi, Won SeokOh, Ho RimKim, In WooYoun, HyewonKEUM, GYO CHANGBang, Eun­KyoungRhee, Joon HaengLee, Shee EunNam, Jae­Hwan
Issue Date
John Wiley & Sons Inc.
Journal of Medical Virology, v.95, no.12
The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.
HUMAN-PAPILLOMAVIRUS; IMMUNE-RESPONSES; TUMOR; IMMUNOTHERAPY; PROTEIN; MICE; cancer therapy; HPV; HPV-mediated cancer; therapeutic mRNA; vaccine
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.