Artificial Octopus-Limb-Like Adhesive Patches for Cupping-Driven Transdermal Delivery with Nanoscale Control of Stratum Corneum

Authors
Lee, JihyunHwang, Gui WonLee, Bum SooPark, No-JuneKim, Su-NamLim, DohyunKim, Da WanLee, Yeon SooPark, Hyoung-KiKim, SeulgiKim, Jin WoongYi, Gi-RaKim, Ki HyunPang, Changhyun
Issue Date
2024-02
Publisher
American Chemical Society
Citation
ACS Nano, v.18, no.7, pp.5311 - 5321
Abstract
Drug delivery through complex skin is currently being studied using various innovative structural and material strategies due to the low delivery efficiency of the multilayered stratum corneum as a barrier function. Existing microneedle-based or electrical stimulation methods have made considerable advances, but they still have technical limitations to reduce skin discomfort and increase user convenience. This work introduces the design, operation mechanism, and performance of noninvasive transdermal patch with dual-layered suction chamber cluster (d-SCC) mimicking octopus-limb capable of wet adhesion with enhanced adhesion hysteresis and physical stimulation. The d-SCC facilitates cupping-driven drug delivery through the skin with only finger pressure. Our device enables nanoscale deformation control of stratum corneum of the engaged skin, allowing for efficient transport of diverse drugs through the stratum corneum without causing skin discomfort. Compared without the cupping effect of d-SCC, applying negative pressure to the porcine, human cadaver, and artificial skin for 30 min significantly improved the penetration depth of liquid-formulated subnanoscale medicines up to 44, 56, and 139%. After removing the cups, an additional acceleration in delivery to the skin was observed. The feasibility of d-SCC was demonstrated in an atopic dermatitis-induced model with thickened stratum corneum, contributing to the normalization of immune response.
Keywords
SKIN; RELEASE; Biomimetics; Adhesive; Elastomer; Cupping; Transdermalpatch
ISSN
1936-0851
URI
https://pubs.kist.re.kr/handle/201004/149342
DOI
10.1021/acsnano.3c09304
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE