Design guidelines for a high-performance hard carbon anode in sodium ion batteries

Authors
Jong Chan HyunHyeong Min JinKWAK, JIN HWANSon HaDong Hyuk KangHyun Soo KimSion KimMinhyuck ParkChan Yeol KimJuhee YoonJi Sung ParkJi-Young KimHee-Dae LimCho, Se YounHyoung-Joon JinYoung Soo Yun
Issue Date
2024-03
Publisher
Royal Society of Chemistry
Citation
Energy & Environmental Science
Abstract
Unclear information on materials design significantly hinders the construction of enhanced hard carbon anodes with high sodium plateau capacities (SPCs). The pore volume ratio of hard carbon imposes thermodynamic limitations on the theoretical sodium plateau capacities (T-SPCs); however, relying solely on its pore structures is not sufficient to predict the practicable SPCs. This study entailed an investigation of a key kinetic parameter of hard carbons that mainly affects the coefficient of capacity utilization (CCU) of SPCs by using a series of polymeric hard carbons (PHCs) with different microstructures. A systematic study revealed a close relationship between the 2D to G band intensity ratio (I2D/IG) in the Raman spectrum and the internal kinetic barrier for sodium-ion transfer. On the basis of the thermodynamic and kinetic parameters, the structural indicator referred to as the SPC factor was devised to characterize the CCU for SPCs. The SPC factor clearly describes an optimal hard carbon anode as one that possesses a high closed pore volume ratio and low I2D/IG value. The highest SPC of ∼400 mA h g?1 was achieved through simple microstructural tuning of the PHCs, demonstrating the feasibility of the proposed design guidelines for a high-performance hard carbon anode for sodium-ion batteries.
Keywords
GRAPHENE PAPER; STORAGE; OXIDE; CONVERSION; SHEETS
ISSN
1754-5692
URI
https://pubs.kist.re.kr/handle/201004/149546
DOI
10.1039/D4EE00315B
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE