Full metadata record

DC Field Value Language
dc.contributor.authorPark, Min Ho-
dc.contributor.authorJeong, Jun Hyung-
dc.contributor.authorKim, Wonsik-
dc.contributor.authorPark, Soohyung-
dc.contributor.authorLim, Byeong Min-
dc.contributor.authorLee, Hong-Sub-
dc.contributor.authorKang, Seong Jun-
dc.date.accessioned2024-04-29T09:00:06Z-
dc.date.available2024-04-29T09:00:06Z-
dc.date.created2024-04-29-
dc.date.issued2024-05-
dc.identifier.issn2050-7526-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149760-
dc.description.abstractMemristors are becoming increasingly recognized as candidates for neuromorphic devices due to their low power consumption, non-volatile memory, and synaptic properties and the ease of parallel computing through crossbar arrays. However, sneak current is a critical obstacle in crossbar arrays, and much research is being conducted to suppress the sneak current through self-rectifying characteristics. Here, we present a highly straightforward method for fabricating an active layer of a self-rectifying memristor through a single spin coating process, capitalizing on the attributes of spin coating, which initiates the reaction from the upper portion of the solution. We fabricated a self-rectifying memristor using an Ag/TiO2/TiOx/ITO structure through a vacuum-free solution process with low cost. During the spin-coating process, the reaction between titanium isopropoxide (TTIP) and ambient moisture formed TiO2 with an oxygen vacancy gradient. We confirmed the natural oxygen vacancy gradient using X-ray photoelectron spectroscopy (XPS) depth profiling and elucidated the resistance switching and self-rectifying mechanisms of the memristor based on the energy band structure. The memristors exhibited resistance switching and self-rectifying characteristics, which were essential characteristics for preventing sneak currents in a 3 × 3 crossbar array structure.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleA facile solution processible self-rectifying and sub-1 V operating memristor via oxygen vacancy gradient within a TiO2 single layer-
dc.typeArticle-
dc.identifier.doi10.1039/d4tc00227j-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry C, v.12, no.19, pp.6881 - 6892-
dc.citation.titleJournal of Materials Chemistry C-
dc.citation.volume12-
dc.citation.number19-
dc.citation.startPage6881-
dc.citation.endPage6892-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001208280800001-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusANATASE-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusCOATINGS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusARRAY-
dc.subject.keywordPlusLOW-POWER-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE