Separators and Membranes for Advanced Alkaline Water Electrolysis

Authors
Henkensmeier, DirkCho, Won-ChulJannasch, PatricStojadinovic, JelenaLi, QingfengAili, DavidJensen, Jens Oluf
Issue Date
2024-05
Publisher
American Chemical Society
Citation
Chemical Reviews, v.124, no.10, pp.6393 - 6443
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5?7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0?1 M KOH feed solutions to balance the trade-off between conductivity and the AEM’s lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Keywords
SOLVATING POLYMER ELECTROLYTE; ONE-POT SYNTHESIS; HIGH-PERFORMANCE; FUEL-CELLS; SIDE-CHAIN; DOPED POLYBENZIMIDAZOLE; MANUFACTURING PARAMETERS; POLY(ARYLENE ALKYLENE)S; ANION-EXCHANGE MEMBRANE; QUATERNARY AMMONIUM CATIONS
ISSN
0009-2665
URI
https://pubs.kist.re.kr/handle/201004/149762
DOI
10.1021/acs.chemrev.3c00694
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE