Full metadata record

DC Field Value Language
dc.contributor.authorKo, Gwan-Jin-
dc.contributor.authorKang, Heeseok-
dc.contributor.authorHan, Won Bae-
dc.contributor.authorDutta, Ankan-
dc.contributor.authorShin, Jeong-Woong-
dc.contributor.authorJang, Tae-Min-
dc.contributor.authorHan, Sungkeun-
dc.contributor.authorLim, Jun Hyeon-
dc.contributor.authorEom, Chan-Hwi-
dc.contributor.authorChoi, So Jeong-
dc.contributor.authorRyu, Yelynn-
dc.contributor.authorYeo, Woon-Hong-
dc.contributor.authorCheng, Huanyu-
dc.contributor.authorHwang, Suk-Won-
dc.date.accessioned2024-05-16T09:30:15Z-
dc.date.available2024-05-16T09:30:15Z-
dc.date.created2024-05-16-
dc.date.issued2024-09-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149851-
dc.description.abstractEffective encapsulation is essential for reliable operation of bio-integrated electronics, particularly those containing dissolvable elements, under humid environments for desired periods of time; however, conventional inorganic or organic encapsulants often suffer from tissue-incompatible mechanical rigidity and insufficient water-barrier performance. Here, a mechanically resilient and efficient encapsulation strategy is proposed that can exceed a functional lifetime of state-of-the-art soft encapsulations by several tens of magnitudes. The exceptional protection arises from the high aspect ratio of dissolvable yet impermeable inorganic fillers embedded within biodegradable polymers, which significantly extend the diffusion length of biofluids or water components. Theoretical modeling and experimental analysis elucidate the effects of types, shapes, and concentrations of the fillers on encapsulation performance, as well as mechanical/physical properties. The operation of electronic components under aqueous solutions for prolonged periods demonstrates the practical feasibility of the encapsulation approach for versatile types of soft, biodegradable electronics. A hybrid composite-based mechanically resilient and extremely efficient encapsulation strategy for soft, biodegradable electronics is developed. Impermeable inorganic fillers, particularly high aspect ratio flakes, embedded within biodegradable polymers significantly slow down water permeation. Theoretical modeling and experimental analysis explore the water-barrier performance, while the extended operation of transient electronic devices with the encapsulation underwater validates the outstanding protective capability. image-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleMaterials and Designs for Extremely Efficient Encapsulation of Soft, Biodegradable Electronics-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202403427-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.34, no.39-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume34-
dc.citation.number39-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85192434260-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusTRANSIENT-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusELASTOMERS-
dc.subject.keywordPlusWIRELESS-
dc.subject.keywordAuthorbiodegradable electronics-
dc.subject.keywordAuthorbiodegradable polymer-
dc.subject.keywordAuthorflexible encapsulation-
dc.subject.keywordAuthorhybrid polymer composite-
dc.subject.keywordAuthortransient electronics-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE