Injectable Self-Oxygenating Cardio-Protective and Tissue Adhesive Silk-Based Hydrogel for Alleviating Ischemia After Mi Injury

Authors
Hassan, ShabirRezaei, ZahraLuna, EderYilmaz-Aykut, DilaraLee, Myung ChulPerea, Ana MarieJamaiyar, AnuragBassous, NicoleHirano, MinoruTourk, Fatima MumtazaChoi, CholongBecker, MalinYazdi, ImanFan, KaiAvila-Ramirez, Alan EduardoGe, DavidAbdi, RezaFisch, SudeshnaLeijten, JeroenFeinberg, Mark W.Mandal, Biman B.Liao, RonglihShin, Su Ryon
Issue Date
2024-05
Publisher
Wiley - V C H Verlag GmbbH & Co.
Citation
Small
Abstract
Myocardial infarction (MI) is a significant cardiovascular disease that restricts blood flow, resulting in massive cell death and leading to stiff and noncontractile fibrotic scar tissue formation. Recently, sustained oxygen release in the MI area has shown regeneration ability; however, improving its therapeutic efficiency for regenerative medicine remains challenging. Here, a combinatorial strategy for cardiac repair by developing cardioprotective and oxygenating hybrid hydrogels that locally sustain the release of stromal cell-derived factor-1 alpha (SDF) and oxygen for simultaneous activation of neovascularization at the infarct area is presented. A sustained release of oxygen and SDF from injectable, mechanically robust, and tissue-adhesive silk-based hybrid hydrogels is achieved. Enhanced endothelialization under normoxia and anoxia is observed. Furthermore, there is a marked improvement in vascularization that leads to an increment in cardiomyocyte survival by approximate to 30% and a reduction of the fibrotic scar formation in an MI animal rodent model. Improved left ventricular systolic and diastolic functions by approximate to 10% and 20%, respectively, with a approximate to 25% higher ejection fraction on day 7 are also observed. Therefore, local delivery of therapeutic oxygenating and cardioprotective hydrogels demonstrates beneficial effects on cardiac functional recovery for reparative therapy. A combinatorial strategy for cardiac repair is presented by developing cardioprotective and oxygenating hybrid hydrogels composed of silk fibroin and tyramine-alginate that locally sustain the release of stromal cell-derived factor-1 alpha and oxygen for enhanced cardiomyocyte survival and vascularization. These therapeutic hydrogels demonstrate beneficial effects on cardiac functional recovery in a myocardial infarction rodent model and hold promise for reparative therapy. image
Keywords
CELL-DERIVED FACTOR; MESENCHYMAL STEM-CELLS; FACTOR 1-ALPHA; IN-VITRO; ENZYMATIC DEGRADATION; ALGINATE HYDROGELS; ENDOTHELIAL-CELLS; FIBROIN; SDF-1; BIOMATERIALS; myocardial infarction; oxygenating microparticles; silk hydrogel; stromal differentiation factor; vascularization
ISSN
1613-6810
URI
https://pubs.kist.re.kr/handle/201004/149882
DOI
10.1002/smll.202312261
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE