Full metadata record

DC Field Value Language
dc.contributor.authorHwang, Seongkwon-
dc.contributor.authorJang, Doojoon-
dc.contributor.authorKim, Heesuk-
dc.contributor.authorKwak, Jeonghun-
dc.contributor.authorChung, Seungjun-
dc.date.accessioned2024-05-31T01:00:19Z-
dc.date.available2024-05-31T01:00:19Z-
dc.date.created2024-05-30-
dc.date.issued2024-05-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149984-
dc.description.abstractWe propose a novel design of thermoelectric (TE) effect-based soft temperature sensors for directly monitoring localized subtle temperature stimuli. This design integrates rheology-engineered three-dimensional (3D) printing of high-performance carbon-based TE materials and polymer-based viscoelastic materials with low thermal conductivity. Rheological engineering of carbon nanotube (CNT) TE inks ensures the 3D printing of highly sensitive TE sensing units on directly written 3D soft platforms. Additionally, we pre-dope CNT inks with p- and n-type organic dopants to achieve high sensitivity and a fast response to temperature changes. The introduced 3D soft platforms with low thermal conductivity lead to an efficient thermal gradient on TE sensing units in the out-of-plane direction. Furthermore, encapsulating the temperature sensor array with the same polymer-based materials as the 3D soft platforms facilitates independent detection of localized temperature stimuli by minimizing thermal interaction between sensing units, resulting in precise temperature mapping by localized detection. Our 3D-printed soft temperature sensors exhibit high sensitivity to relatively small temperature changes, with a minimum sensing resolution of 0.1 K within tens of milliseconds. Moreover, the temperature sensor array not only detects localized temperature stimuli by imaging the temperature distribution but also demonstrates remarkable mechanical reliability against repetitive deformation with high accuracy.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.title3D-Printed Soft Temperature Sensors Based on Thermoelectric Effects for Fast Mapping of Localized Temperature Distributions-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.4c04021-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.16, no.19, pp.25071 - 25079-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume16-
dc.citation.number19-
dc.citation.startPage25071-
dc.citation.endPage25079-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001227641000001-
dc.identifier.scopusid2-s2.0-85192240979-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOWER-
dc.subject.keywordAuthorsoft temperature sensors-
dc.subject.keywordAuthor3D printing-
dc.subject.keywordAuthorthermoelectrics-
dc.subject.keywordAuthorcarbon nanotubes-
dc.subject.keywordAuthorlocalized temperature sensing-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE