A new perspective for potassium intercalation chemistry in graphitic carbon materials

Authors
Hyun Soo KimJong Chan HyunYeonhua ChoiSon HaDong Hyuk KangYeong Hoon HeoJin Hwan KwakJuhee YoonJin Bae LeeKim, Ji YoungHyoung-Joon JinJuhyun LeeHyung-Kyu LimYoung Soo Yun
Issue Date
2024-06
Publisher
Elsevier BV
Citation
Energy Storage Materials, v.70
Abstract
Potassium intercalation mechanism in graphitic carbon materials is known to be a staging reaction similar to that of lithium, despite their antithetic intercalation trend in turbostratic carbon (TBC) materials. This study clarified the distinctive potassium intercalation behavior of graphitic carbon materials with different local microstructures through a systematic comparative investigation. In contrast to the monotonic stacking sequence of lithium-intercalated graphitic carbon materials, multiple potassium-intercalated graphitic configurations can be formed by potassiation at an energy level similar to the theoretical KC8 formation. Accordingly, potassium intercalation in TBC materials can result in a theoretical low-voltage plateau capacity without long-range ordering. In contrast, the high energy cost for the threshold number of initial potassium insertions significantly hinders two-phase potassium intercalation in well-ordered graphite-like carbon materials, leading to a poor plateau capacity. Hence, potassium intercalation is more favorable in a turbostratic microstructure that includes intrinsic defects, whereas the presence of too many intrinsic defects reduces the polyhexagonal carbon plane for turbostratic intercalation, leading mainly to solid-solution potassium intercalation. Based on these results, the potassium intercalation mechanism in graphitic carbon materials can be classified into three different types such as 1) solid-solution intercalation, 2) turbostratic intercalation, and 3) two-phase intercalation.
ISSN
2405-8297
URI
https://pubs.kist.re.kr/handle/201004/150003
DOI
10.1016/j.ensm.2024.103514
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE