Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy
- Authors
- Choi, Jiwoong; Park, Byeongmin; Park, Jung Yeon; Shin, Dongwon; Lee, Sangmin; Yoon, Hong Yeol; Kim, Kwangmeyung; Kim, Sun Hwa; Kim, Yongju; Yang, Yoosoo; Shim, Man Kyu
- Issue Date
- 2024-09
- Publisher
- WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- Citation
- Advanced Materials, v.36, no.38
- Abstract
- While proteolysis-targeting chimeras (PROTACs) hold great potential for persistently reprogramming the immunosuppressive tumor microenvironment (ITM) via targeted protein degradation, precisely activating them in tumor tissues and preventing uncontrolled proteolysis at off-target sites remain challenging. Herein, we report a light-triggered PROTAC nanoassembly (LPN) for photodynamic indoleamine 2,3-dioxygenase (IDO) proteolysis. The LPN is derived from the self-assembly of prodrug conjugates, which comprise a PROTAC, cathepsin B-specific cleavable peptide linker and photosensitizer, without any additional carrier materials. In colon tumor models, intravenously injected LPNs initially silence the activity of PROTACs and accumulate significantly in targeted tumor tissues due to an enhanced permeability and retention (EPR) effect. Subsequently, the cancer biomarker cathepsin B begins to trigger the release of active PROTACs from the LPNs through enzymatic cleavage of the linkers. Upon light irradiation, tumor cells undergo immunogenic cell death (ICD) induced by photodynamic therapy (PDT) to promote the activation of effector T cells, while the continuous IDO degradation of PROTAC simultaneously blocks tryptophan metabolite-regulated regulatory T cell-mediated immunosuppression. Such LPN-mediated combinatorial photodynamic IDO proteolysis effectively inhibits tumor growth, metastasis and recurrence. Collectively, this study presents a promising nanomedicine, designed to synergize PROTACs with other immunotherapeutic modalities, for more effective and safer cancer immunotherapy.
- Keywords
- PATHWAY; BENCH; RESISTANCE; THERAPY; proteolysis-targeting chimeras (PROTACs); cancer immunotherapy; indoleamine 2,3-dioxygenase (IDO); nanomedicine; photodynamic therapy (PDT)
- ISSN
- 0935-9648
- URI
- https://pubs.kist.re.kr/handle/201004/150115
- DOI
- 10.1002/adma.202405475
- Appears in Collections:
- KIST Article > 2024
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.