Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy

Authors
Choi, JiwoongPark, ByeongminPark, Jung YeonShin, DongwonLee, SangminYoon, Hong YeolKim, KwangmeyungKim, Sun HwaKim, YongjuYang, YoosooShim, Man Kyu
Issue Date
2024-06
Publisher
Wiley
Citation
Advanced Materials
Abstract
While proteolysis-targeting chimeras (PROTACs) hold great potential for persistently reprogramming the immunosuppressive tumor microenvironment (ITM) via targeted protein degradation, precisely activating them in tumor tissues and preventing uncontrolled proteolysis at off-target sites remain challenging. Herein, we report a light-triggered PROTAC nanoassembly (LPN) for photodynamic indoleamine 2,3-dioxygenase (IDO) proteolysis. The LPN is derived from the self-assembly of prodrug conjugates, which comprise a PROTAC, cathepsin B-specific cleavable peptide linker and photosensitizer, without any additional carrier materials. In colon tumor models, intravenously injected LPNs initially silence the activity of PROTACs and accumulate significantly in targeted tumor tissues due to an enhanced permeability and retention (EPR) effect. Subsequently, the cancer biomarker cathepsin B begins to trigger the release of active PROTACs from the LPNs through enzymatic cleavage of the linkers. Upon light irradiation, tumor cells undergo immunogenic cell death (ICD) induced by photodynamic therapy (PDT) to promote the activation of effector T cells, while the continuous IDO degradation of PROTAC simultaneously blocks tryptophan metabolite-regulated regulatory T cell-mediated immunosuppression. Such LPN-mediated combinatorial photodynamic IDO proteolysis effectively inhibits tumor growth, metastasis and recurrence. Collectively, this study presents a promising nanomedicine, designed to synergize PROTACs with other immunotherapeutic modalities, for more effective and safer cancer immunotherapy.
Keywords
PATHWAY; BENCH; RESISTANCE; THERAPY; nanomedicine; photodynamic therapy (PDT); proteolysis-targeting chimeras (PROTACs); cancer immunotherapy; indoleamine 2,3-dioxygenase (IDO)
ISSN
0935-9648
URI
https://pubs.kist.re.kr/handle/201004/150115
DOI
10.1002/adma.202405475
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE