Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries

Authors
Kim, Young GonJEONG, BO GYEONGPark, Bum JinKim, HeejinLee, Min WookJo, Seong Mu
Issue Date
2024-07
Publisher
MDPI Open Access Publishing
Citation
Polymers, v.16, no.13
Abstract
Porous silicon dioxide (SiO2)/poly(vinylidene fluoride) (PVdF), SiO2/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO2 sol?gel/PVdF. The nanofibers of the SiO2/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO2 component. The thickness of the SiO2 skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO2 and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.
Keywords
PERFORMANCE; CELLS; THERMAL-STABILITY; FIBERS; separator; high thermal property; lithium secondary polymer battery; SiO2/PVdF blend fiber; electrospinning; skin multicore-shell
URI
https://pubs.kist.re.kr/handle/201004/150120
DOI
10.3390/polym16131810
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE