High energy density in artificial heterostructures through relaxation time modulation

Authors
Han, SangmoonKim, Justin S.Park, EugeneMeng, YuanXu, ZhihaoFoucher, Alexandre C.Jung, Gwan YeongRoh, IlpyoLee, SanghoKim, Sun OkMoon, Ji-YunKim, Seung-IlBae, SanggeunZhang, XinyuanPark, Bo-InSeo, SeunghwanLi, YimengShin, HeechangReidy, KateHoang, Anh TuanSundaram, SureshVuong, PhuongKim, ChansooZhao, JunyiHwang, JinyeonWang, ChuanChoi, HyungilKim, Dong-HwanKwon, JiminPark, Jin-HongOugazzaden, AbdallahLee, Jae-HyunAhn, Jong-HyunKim, JeehwanMishra, RohanKim, Hyung-SeokRoss, Frances M.Bae, Sang-Hoon
Issue Date
2024-04
Publisher
American Association for the Advancement of Science
Citation
Science, v.384, no.6693, pp.312 - 317
Abstract
Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.
Keywords
STORAGE PERFORMANCE; THIN-FILMS; DIELECTRIC-PROPERTIES; INTERFACE; LAYER; INTEGRATION; CAPACITORS; EFFICIENCY
ISSN
0036-8075
URI
https://pubs.kist.re.kr/handle/201004/150189
DOI
10.1126/science.adl2835
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE