Benzylphosphonic acid treated ultra-thin ALD-InOx for long term device stability

Authors
Lee, Ju-HunMoon, JaehyunKim, KitaeYi, YeonjinPark, SoohyungYang, Jong-HeonHwang, Chi-SunKang, Seung-Youl
Issue Date
2024-08
Publisher
Royal Society of Chemistry
Citation
Journal of Materials Chemistry C, v.12, no.31, pp.11928 - 11937
Abstract
In this paper, we demonstrate the long-term stability of the threshold voltage (Vth) of ultra-thin indium oxide (In2O3) TFTs fabricated by atomic layer deposition (ALD) and modified with self-assembled monolayers (SAMs) of benzylphosphonic acid (BPA). By forming a self-assembled monolayer of BPA, it was possible to modify the surface to be hydrophobic and to have a lower surface energy as low as 24 mJ m?2. The surface-modified TFTs were found to be very stable for 168 hours in air with negligible change in Vth. In addition, the subthreshold swing (S.S.) and hysteresis showed improved electrical characteristics. Furthermore, the positive and negative bias stress (PBS and NBS) measurements at 3000 s and a gate voltage (VG) of ±5 V demonstrated the stable value of Vth. This is due to the strong covalent bonding of the hydroxyl group (?OH) on the surface BPA and In2O3 back-channel, which avoids chemisorption of oxygen (O2) and water (H2O) molecules from ambient air and reduces the degradation of the electrical properties of the TFT. These results demonstrate the promising stability of long-term electrical properties and the ease of application to ultra-thin In2O3 TFT and other oxide semiconductors.
Keywords
FILM TRANSISTORS; PHOSPHONIC-ACIDS; OXIDE; ENERGY
ISSN
2050-7526
URI
https://pubs.kist.re.kr/handle/201004/150237
DOI
10.1039/d4tc01752h
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE