Hydrophobic residues in S1 modulate enzymatic function and voltage sensing in voltage-sensing phosphatase

Authors
Rayaprolu, VamseedharMiettinen, Heini M.Baker, William D.Young, Victoria C.Fisher, MatthewMueller, GwendolynRankin, William O.Kelley, John T.Ratzan, William J.Leong, Lee MinDavisson, Joshua A.Baker, Bradley J.Kohout, Susy C.
Issue Date
2024-05
Publisher
Rockefeller University Press
Citation
Journal of General Physiology, v.156, no.7
Abstract
Rayaprolu et al. investigated how hydrophobic residues impact the function of the voltage-sensing phosphatase. They mutated different positions in the S1 helix of the voltage-sensing domain and found more energy was needed for enzyme activation while less was needed to move the sensor. The voltage-sensing domain (VSD) is a four-helix modular protein domain that converts electrical signals into conformational changes, leading to open pores and active enzymes. In most voltage-sensing proteins, the VSDs do not interact with one another, and the S1-S3 helices are considered mainly scaffolding, except in the voltage-sensing phosphatase (VSP) and the proton channel (Hv). To investigate its contribution to VSP function, we mutated four hydrophobic amino acids in S1 to alanine (F127, I131, I134, and L137), individually or in combination. Most of these mutations shifted the voltage dependence of activity to higher voltages; however, not all substrate reactions were the same. The kinetics of enzymatic activity were also altered, with some mutations significantly slowing down dephosphorylation. The voltage dependence of VSD motions was consistently shifted to lower voltages and indicated a second voltage-dependent motion. Additionally, none of the mutations broke the VSP dimer, indicating that the S1 impact could stem from intra- and/or intersubunit interactions. Lastly, when the same mutations were introduced into a genetically encoded voltage indicator, they dramatically altered the optical readings, making some of the kinetics faster and shifting the voltage dependence. These results indicate that the S1 helix in VSP plays a critical role in tuning the enzyme's conformational response to membrane potential transients and influencing the function of the VSD.
Keywords
PROTON CHANNEL; CI-VSP; SENSOR; MOVEMENT; XENOPUS; MOTION; PTEN
ISSN
0022-1295
URI
https://pubs.kist.re.kr/handle/201004/150247
DOI
10.1085/jgp.202313467
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE