Impact of fuel starvation-induced anode carbon corrosion in proton exchange membrane fuel cells on the structure of the membrane electrode assembly and exhaust gas emissions: A quantitative case study

Authors
Kim, OhsubYoo, Sung JongKim, Jin YoungCho, Sung KiPark, Hyun S.Lee, So YoungSeo, BoraJang, Jong HyunLim, Katie HeeyumPark, Hee-Young
Issue Date
2024-09
Publisher
Elsevier BV
Citation
Journal of Power Sources, v.615
Abstract
Although the durability of proton exchange membrane fuel cells (PEMFCs) is crucial for their broad commercial applications, current durability assessments do not encompass all operational scenarios. Startup/shut-down (SUSD) are among the most significant degradation factors in the city. To bridge this gap, we examine the phenomenon of fuel starvation, which leads to the rapid and irreversible degradation of PEMFC performance, particularly during SUSD, but has not been independently examined in the context of PEMFC durability. A quantitative methodology is used to analyze anode carbon corrosion and establish correlations with critical parameters under fuel starvation conditions. In particular, we quantify carbon loss based on (i) the composition or amount of the anode outlet gas emitted under such conditions and (ii) changes in the anode thickness at three distinct locations. The corresponding carbon losses due to 10 min of fuel starvation ((i): 212.0 mu g cm(-2), (ii): 189.6 +/- 12.9 mu g cm(-2)) agree well with each other. The largest decrease in the anode thickness (81.3 %) is observed near the outlet. The obtained insights provide guidance for the design of high-performance PEMFCs and the development of protective measures against the detrimental effects of fuel starvation.
Keywords
AIR/FUEL BOUNDARY; CATALYST-LAYER; DEGRADATION; PEMFC; DURABILITY; REVERSAL; NANOFIBERS; ISSUES; RATIO; Anode carbon corrosion; Proton exchange membrane fuel cell; Exhaust CO2 gas; Structural degradation; Fuel starvation
ISSN
0378-7753
URI
https://pubs.kist.re.kr/handle/201004/150367
DOI
10.1016/j.jpowsour.2024.235032
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE