Autonomous real-time control for membrane capacitive deionization
- Authors
- Shim, Jaegyu; Lee, Suin; Yun, Nakyeong; Son, Moon; Chae, Sung Ho; Cho, Kyung Hwa
- Issue Date
- 2024-09
- Publisher
- Elsevier BV
- Citation
- Water Research, v.262
- Abstract
- Artificial intelligence has been employed to simulate and optimize the performance of membrane capacitive deionization (MCDI), an emerging ion separation process. However, a real-time control for optimal MCDI operation has not been investigated yet. In this study, we aimed to develop a reinforcement learning (RL)-based control model and investigate the model to find an energy-efficient MCDI operation strategy. To fulfill the objectives, we established three long-short term memory models to predict applied voltage, outflow pH, and outflow electrical conductivity. Also, four RL agents were trained to minimize outflow concentration and energy consumption simultaneously. Consequently, actor-critic (A2C) and proximal policy optimization (PPO2) achieved the ion separation goal (<0.8 mS/cm) as they determined the electrical current and pump speed to be low. Particularly, A2C kept the parameters consistent in charging MCDI, which caused lower energy consumption (0.0128 kWh/m(3)) than PPO2 (0.0363 kWh/m(3)). To understand the decision-making process of A2C, the Shapley additive explanation based on the decision tree model estimated the influence of input parameters on the control parameters. The results of this study demonstrate the feasibility of RL-based controls in MCDI operations. Thus, we expect that the RL-based control model can improve further and enhance the efficiency of water treatment technologies.
- Keywords
- BRACKISH-WATER; DESALINATION; Membrane capacitive deionization; Real-time; Process control; Optimization; Reinforcement learning
- ISSN
- 0043-1354
- URI
- https://pubs.kist.re.kr/handle/201004/150380
- DOI
- 10.1016/j.watres.2024.122086
- Appears in Collections:
- KIST Article > 2024
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.