Full metadata record

DC Field Value Language
dc.contributor.authorKim, Yeonhwa-
dc.contributor.authorShin, Hyun-Beom-
dc.contributor.authorJu, Eunkyo-
dc.contributor.authorMadarang, May Angelu-
dc.contributor.authorChu, Rafael Jumar-
dc.contributor.authorLaryn, Tsimafei-
dc.contributor.authorKim, Taehee-
dc.contributor.authorLee, In-Hwan-
dc.contributor.authorKang, Ho Kwan-
dc.contributor.authorChoi, Won Jun-
dc.contributor.authorJung, Daehwan-
dc.date.accessioned2024-08-29T06:30:19Z-
dc.date.available2024-08-29T06:30:19Z-
dc.date.created2024-08-29-
dc.date.issued2024-09-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150524-
dc.description.abstractDirect epitaxy of III-V materials on Si is a promising approach for highly stable, scalable, and efficient Si-based multijunction solar cells. However, challenges lie in overcoming epitaxial dislocations and residual thermal strain generated by lattice constant and thermal-expansion-coefficient mismatches, respectively. Herein, a 15.2% efficient InGaP/GaAs/Si triple-junction solar cell with an open-circuit voltage of 2.36 V by using In0.10Al0.16Ga0.74As digital-alloy dislocation filter layers is first demonstrated. The filter layers are utilized in the n-GaAs buffer on Si to reduce threading dislocation density to 4 x 10(7) cm(-2) while maintaining optical transparency to Si bottom cell. Then, the impacts of threading dislocations and residual tension on InGaP/GaAs/Si cells are systematically investigated by comparing them to the co-grown InGaP/GaAs tandem cells on a native GaAs substrate. Based on the comparative analysis, a strategy to suppress material deformation and defect formation toward 30% efficient InGaP/GaAs/Si triple-junction solar cells is proposed.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleImpacts of Dislocations and Residual Thermal Tension on Monolithically Integrated InGaP/GaAs/Si Triple-Junction Solar Cells-
dc.typeArticle-
dc.identifier.doi10.1002/solr.202400318-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSolar RRL, v.8, no.18-
dc.citation.titleSolar RRL-
dc.citation.volume8-
dc.citation.number18-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85201553454-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusGAAS-
dc.subject.keywordPlusSI-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusSUBSTRATE-
dc.subject.keywordPlusLIFETIME-
dc.subject.keywordPlusGAP/SI-
dc.subject.keywordAuthordislocations-
dc.subject.keywordAuthorepitaxial growth-
dc.subject.keywordAuthormonolithic III-V/Si tandem-
dc.subject.keywordAuthorsolar cell-
dc.subject.keywordAuthorthermal tension-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE