Hierarchical Nanowire Host Material for High-Areal-Capacity All-Solid-State S/SeS2 Batteries

Authors
Kim, HunChoi, Ha-NeulKim, Min-JaeKansara, ShivamKim, Jun TaeShin, Min-SeokHwang, Jang-YeonJung, Hun-GiMing, JunSun, Yang-Kook
Issue Date
2024-10
Publisher
John Wiley & Sons Ltd.
Citation
Advanced Functional Materials
Abstract
All-solid-state sulfur batteries (ASBs) suffer from electrical and ionic conduction problems due to the insulating sulfur. By comparing three host materials with different structural characteristics, herein, carbon nanotubes (CNTs) decorated with a conductive metal sulfide (CoMoS2@CNT) is demonstrated, designed to host sulfur and exchange both Li-ions and electrons, effectively. In this hierarchical wire structure, porous CoMoS2 nanosheets form close interfaces with sulfur, and the CNT core directly transfers electrons to the sulfur-impregnated CoMoS2. Simultaneously, the solid electrolyte positioned on the outer region of the nanowire material ensures facile Li-ion conduction to the sulfur-impregnated CoMoS2. An ASB featuring a CoMoS2@CNT host material with a sulfur loading of 3 mg cm(-2) exhibits a high-areal-capacity of 4.5 mAh cm(-2) at a current density of 2.5 mA cm(-2), while retaining 79.4% of its initial capacity after 300 cycles. When sulfur is replaced with SeS2 to further reinforce the charge conduction properties, all-solid-state SeS2 batteries (ASeS(2)Bs) with an extremely high-areal-capacity of 16.3 mAh cm(-2) retain 99.3% of their initial capacities after 60 cycles at 60 degrees C. This study provides guidelines for the design principles of cathode composites for the ASBs and ASeS(2)Bs through multiangle comparative analysis.
Keywords
LITHIUM-SULFUR BATTERIES; ELECTRODE; CATHODE; ION; all-solid-state lithium-sulfur batteries; composite cathode; host material; nanowire; selenium disulfide
ISSN
1616-301X
URI
https://pubs.kist.re.kr/handle/201004/150991
DOI
10.1002/adfm.202415299
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE