Interfacially Assembled Anion Exchange Membranes for Water Electrolysis
- Authors
- Kim, Hansoo; Jeon, Sungkwon; Choi, Juyeon; Park, Young Sang; Park, Sung-Joon; Lee, Myung-Seok; Nam, Yujin; Park, Hosik; Kim, MinJoong; Lee, Changsoo; An, Si Eon; Jung, Jiyoon; Kim, Seunghwan; Kim, Jeong F.; Cho, Hyun-Seok; Lee, Albert S.; Lee, Jung-Hyun
- Issue Date
- 2024-11
- Publisher
- American Chemical Society
- Citation
- ACS Nano, v.18, no.47, pp.32694 - 32704
- Abstract
- High-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory electrochemical performance and long-term durability. Here we report an AEM fabricated via a one-pot, in situ interfacial Menshutkin reaction, which assembles a highly cross-linked polymer containing high-density quaternary ammoniums and nanovoids inside a reinforcing porous support. This structure endows the membrane with high anion-conducting ability, water uptake (but low swelling), and mechanical and thermochemical robustness. Consequently, the assembled membrane achieves excellent AWE (0.97 A cm-2 at 1.8 V) and AEMWE (5.23 A cm-2 at 1.8 V) performance at 5 wt % KOH and 80 degrees C, significantly exceeding that of commercial and previously developed membranes, and excellent long-term durability. Our approach provides an effective method for fabricating AEMs for various energy and environmental applications.
- Keywords
- QUATERNARY AMMONIUM; PERFORMANCE; HYDROGEN; SEPARATOR; STABILITY; HYDROXIDE; BEHAVIOR; green hydrogen; water electrolysis; anion exchangemembrane; interfacial reaction; Menshutkin reaction
- ISSN
- 1936-0851
- URI
- https://pubs.kist.re.kr/handle/201004/151249
- DOI
- 10.1021/acsnano.4c10212
- Appears in Collections:
- KIST Article > 2024
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.