Full metadata record

DC Field Value Language
dc.contributor.authorKim, Doyoung-
dc.contributor.authorRyu, Seong-
dc.contributor.authorBae, Sukang-
dc.contributor.authorLee, Min Wook-
dc.contributor.authorKim, Tae-Wook-
dc.contributor.authorBae, Jong-Seong-
dc.contributor.authorPark, Jiwon-
dc.contributor.authorLee, Seoung-Ki-
dc.date.accessioned2025-01-02T02:30:16Z-
dc.date.available2025-01-02T02:30:16Z-
dc.date.created2024-12-30-
dc.date.issued2024-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151444-
dc.description.abstractThe rapid evolution of microelectronics and display technologies has driven the demand for advanced manufacturing techniques capable of precise, high-speed microchip transfer. As devices shrink in size and increase in complexity, scalable and contactless methods for microscale placement are essential. Laser-induced forward transfer (LIFT) has emerged as a transformative solution, offering the precision and adaptability required for next-generation applications such as micro-light-emitting diodes (mu-LEDs). This study optimizes the LIFT process for the precise transfer of silicon microchips designed to mimic mu-LEDs. Critical parameters, including laser energy density, laser pulse width, and dynamic release layer (DRL) thickness are systematically adjusted to ensure controlled blister formation, a key factor for successful material transfer. The DRL, a polyimide-based photoreactive layer, undergoes photothermal decomposition under 355 nm laser irradiation, creating localized pressure that propels microchips onto the receiver substrate in a contactless manner. Using advanced techniques such as three-dimensional profilometry, X-ray photoelectron spectroscopy, and ultrafast imaging, this study evaluates the rupture dynamics of the DRL and the velocity of microchips during transfer. Optimization of the DRL thickness to 1 mu m and a transfer velocity of 20 m s(-)1 achieves a transfer yield of up to 97%, showcasing LIFT's potential in mu-LED manufacturing and semiconductor production.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleDynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer-
dc.typeArticle-
dc.identifier.doi10.3390/nano14231926-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNanomaterials, v.14, no.23-
dc.citation.titleNanomaterials-
dc.citation.volume14-
dc.citation.number23-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001376535500001-
dc.identifier.scopusid2-s2.0-85212218357-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOLYIMIDE-
dc.subject.keywordPlusSTIFFNESS-
dc.subject.keywordPlusABLATION-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorlaser-induced forward transfer-
dc.subject.keywordAuthormicro-light-emitting diode-
dc.subject.keywordAuthorblister actuation-
dc.subject.keywordAuthorcontactless transfer-
dc.subject.keywordAuthormicrochip-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE