Full metadata record

DC Field Value Language
dc.contributor.authorOh, Cheoulwoo-
dc.contributor.authorKim, Jiwon-
dc.contributor.authorLim, Chulwan-
dc.contributor.authorHwang, Yun Jeong-
dc.contributor.authorChoi, Jae-Young-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorPark, Jong Hyeok-
dc.contributor.authorOh, Hyung-Suk-
dc.date.accessioned2025-01-07T06:00:05Z-
dc.date.available2025-01-07T06:00:05Z-
dc.date.created2024-12-30-
dc.date.issued2025-05-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151493-
dc.description.abstractGlobal warming increases methane emissions from Arctic permafrost, which in turn reaccelerates global warming, creating a vicious cycle. Addressing this issue requires innovative solutions, such as electro-assisted methane partial oxidation (EMPO), which can provide an on-site facility for sustainable methane emission reduction in permafrost. In this study, a Co singe-atom catalyst was synthesized as an oxygen reduction reaction (ORR) catalyst that can be practically applied to stand-alone EMPO systems. To address performance degradation and cold weather freezing due to flooding of the electrodes, the hydrophobic polytetrafluoroethylene was mixed into a catalyst layer to regulate the microenvironment near cathodes. Furthermore, hydrophobic cathodes offer a pathway for nonpolar gases to increase the local concentration of methane. The enhanced local methane concentration, combined with an efficient ORR catalyst, yields 8 mmol g(cat)(-1) formic acid at a low potential bias. Remarkably, the EMPO system exhibits a consistent production even with air and is highly stable. This leads to possibility of on-site facility for methane conversion without external energy at thermokarst lakes.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleA sustainable strategy to reduce net methane emissions from thermokarst lakes by electrochemical methane partial oxidation-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2024.124833-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Catalysis B: Environment and Energy, v.364-
dc.citation.titleApplied Catalysis B: Environment and Energy-
dc.citation.volume364-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001370280300001-
dc.identifier.scopusid2-s2.0-85209678084-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSELECTIVE OXIDATION-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusH2O2-
dc.subject.keywordPlusIRON-
dc.subject.keywordPlusO-2-
dc.subject.keywordPlusCH4-
dc.subject.keywordAuthorArctic permafrost-
dc.subject.keywordAuthorThermokarst lakes-
dc.subject.keywordAuthorElectro-assisted methane partial oxidation (EMPO)-
dc.subject.keywordAuthorHydrophobic cathode-
dc.subject.keywordAuthorOxygen reduction reaction (ORR)-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE