Self-assembly by anti-repellent structures for programming particles with momentum

Authors
Bae, JunghyunYoon, JinsikOh, SangminKim, KibeomKim, HyeliHur, KahyunCho, HyesungPark, Wook
Issue Date
2024-12
Publisher
Nature Publishing Group
Citation
Nature Communications, v.15, no.1
Abstract
Self-assembled configurations are versatile for applications in which liquid-mediated phenomena are employed to ensure that static or mild physical interactions between assembling blocks take advantage of local energy minima. For granular materials, however, a particle's momentum in air leads to random collisions and the formation of disordered phases, eventually producing jammed configurations when densely packed. Therefore, unlike fluidic self-assembly, the self-assembly of dry particles typically lacks programmability based on density and ordering symmetry and has thus been limited in applications. Here, we present the self-assembly of particles with momentum, yielding regular arrays with programmable density and symmetry. The key is to embed anti-repellent structures, i.e. traps, that can capture kinetic particles individually and then robustly hold them against collisions with other momentum granules during a dynamic assembly procedure. By using anti-repellent traps, physical interactions between neighbouring particles can be inhibited, resolving many phenomena related to the uncertainty of space-sharing events in granular packing. With our self-assembly strategy, highly dense yet unjammed configurations are demonstrated, which conserve the inherent randomness in the location information of each granule in the trap and are useful for robust multilevel authentication systems as unique applications.
Keywords
COMPLEX
URI
https://pubs.kist.re.kr/handle/201004/151588
DOI
10.1038/s41467-024-54976-7
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE