Full metadata record

DC Field Value Language
dc.contributor.authorHan, Huijun-
dc.contributor.authorBaek, Juyeol-
dc.contributor.authorYoon, Cheolhwan-
dc.contributor.authorKim, Yohan-
dc.contributor.authorHa, Taejun-
dc.contributor.authorKim, Hayoung-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorShim, Jae-Hyeok-
dc.contributor.authorShin, Hyung-Joon-
dc.date.accessioned2025-03-21T08:00:05Z-
dc.date.available2025-03-21T08:00:05Z-
dc.date.created2025-03-19-
dc.date.issued2025-09-
dc.identifier.issn1005-0302-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151949-
dc.description.abstractAbsorption and desorption processes of hydrogen in metals are facilitated by alloying elements; however, the formation of secondary phases often reduces storage capacity. The alloying effect on the hydrogen kinetics has been examined by time-lag permeation measurement, which lacks spatial resolution and yields the averaged diffusion coefficient from multiple phases. Here, we report an advanced scanning Kelvin probe force microscopy, combined with in-situ hydrogen loading system for submicron-scale measurement of diffusion kinetics in metals. Successive probing of the surface during hydrogen loading detects the temporal and spatial variations in the surface potential, enabling the estimation of diffusion coefficient. Not only for a single-phase magnesium but also for multiphase titanium-iron based alloys, we can obtain the diffusion coefficients of hydrogen in each phase. The estimated diffusion coefficients for TiFe alloys are higher than that for the pristine TiFe intermetallic compound, due to alloying elements that reduce the diffusion barrier and modify bond character. Our approach paves the way to the microscopic understanding of hydrogen diffusion in metals. (c) 2025 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.-
dc.languageEnglish-
dc.publisherChinese Society of Metals-
dc.titleIn-situ quantitative measurement of phase-sensitive hydrogen diffusion in metals-
dc.typeArticle-
dc.identifier.doi10.1016/j.jmst.2024.12.050-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Science & Technology, v.229, pp.279 - 286-
dc.citation.titleJournal of Materials Science & Technology-
dc.citation.volume229-
dc.citation.startPage279-
dc.citation.endPage286-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001440917600001-
dc.identifier.scopusid2-s2.0-85219235724-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTORAGE PROPERTIES-
dc.subject.keywordPlusKELVIN PROBE-
dc.subject.keywordPlusTIFE-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusPERMEATION-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusZR-
dc.subject.keywordAuthorHydrogen diffusion-
dc.subject.keywordAuthorDiffusion coefficients-
dc.subject.keywordAuthorTiFe alloy-
dc.subject.keywordAuthorHydrogen storage-
dc.subject.keywordAuthorScanning Kelvin probe force microscopy-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE