Full metadata record

DC Field Value Language
dc.contributor.authorPark, Yeji-
dc.contributor.authorJang, Ho Yeon-
dc.contributor.authorLee, Tae Kyung-
dc.contributor.authorKim, Taekyung-
dc.contributor.authorKim, Doyeop-
dc.contributor.authorKim, Dongjin-
dc.contributor.authorBaik, Hionsuck-
dc.contributor.authorChoi, Jinwon-
dc.contributor.authorKwon, Taehyun-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorBack, Seoin-
dc.contributor.authorLee, Kwangyeol-
dc.date.accessioned2025-03-21T08:00:28Z-
dc.date.available2025-03-21T08:00:28Z-
dc.date.created2025-03-19-
dc.date.issued2025-01-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151955-
dc.description.abstractThe success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuOx has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks. Herein, to steer the reaction pathway away from the involvement of lattice oxygen, we integrate OER-active Ir atoms into the RuO2 matrix, which maximizes the synergy between stable Ru and active Ir centers, by leveraging the changeable growth behavior of Ru/Ir atoms on lattice parameter-modulated templates. In PEMWE, the resulting (RuIr)O2/C electrocatalysts demonstrate notable current density of 4.96 A cm-2 and mass activity of 19.84 A mgRu+Ir-1 at 2.0 V. In situ spectroscopic analysis and computational calculations highlight the importance of the synergistic coexistence of Ru/Ir-dual-OER-active sites for mitigating Ru dissolution via the optimization of the binding energy with oxygen intermediates and stabilization of Ru sites.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleAtomic-level Ru-Ir mixing in rutile-type (RuIr)O2 for efficient and durable oxygen evolution catalysis-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-025-55910-1-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.16, no.1-
dc.citation.titleNature Communications-
dc.citation.volume16-
dc.citation.number1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001396064400024-
dc.identifier.scopusid2-s2.0-85215351396-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusENHANCED PERFORMANCE-
dc.subject.keywordPlusIRIDIUM-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusDURABILITY-
dc.subject.keywordPlusRUO2(110)-
dc.subject.keywordPlusXANES-
dc.subject.keywordPlusSITES-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE