Full metadata record

DC Field Value Language
dc.contributor.authorDu, Naizhou-
dc.contributor.authorLi, Xiaowei-
dc.contributor.authorWei, Xubing-
dc.contributor.authorGuo, Peng-
dc.contributor.authorChen, Rende-
dc.contributor.authorLi, Hao-
dc.contributor.authorWu, Jie-
dc.contributor.authorWang, Lei-
dc.contributor.authorLee, Kwang-Ryeol-
dc.contributor.authorHe, Haibin-
dc.date.accessioned2025-03-22T15:00:10Z-
dc.date.available2025-03-22T15:00:10Z-
dc.date.created2025-03-19-
dc.date.issued2025-04-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152029-
dc.description.abstractThis study investigated the friction mechanisms of textured amorphous carbon (a-C) films under solid-liquid composite conditions using reactive molecular dynamics simulations, focusing on the effects of varying oil content and contact pressure. By quantifying the impact of these factors, the optimal preparation of a-C films for different operating conditions was guided. Results indicate that friction performance is closely related to the lubrication state, which is determined by the coupling of oil content and contact pressure. The potential lubrication mechanisms depend mainly on the fluidity of the lubricant, the bonding between a-C surfaces, and the competitive or synergistic effects of the lubricant and interface passivation in the H-stress state. Most importantly, the Pearson correlation coefficient reveals that rectangular groove textures exhibit high sensitivity to the application environment, and the optimal application scenarios for different textured surfaces are suggested. These insights underscore the importance of selecting appropriate textured types and adjusting lubrication strategies to enhance the tribological performance of a-C films under various operating conditions.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleComprehensive optimization of friction performance of amorphous carbon films under complex solid-liquid composite conditions-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2025.162468-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.688-
dc.citation.titleApplied Surface Science-
dc.citation.volume688-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001405663900001-
dc.identifier.scopusid2-s2.0-85215435240-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTRIBOLOGICAL PERFORMANCE-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusLUBRICATING COATINGS-
dc.subject.keywordPlusINSIGHTS-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordAuthorTextured amorphous carbon-
dc.subject.keywordAuthorSolid-liquid composite-
dc.subject.keywordAuthorHydrodynamic lubrication-
dc.subject.keywordAuthorInterfacial passivation-
dc.subject.keywordAuthorReactive molecular dynamics-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE