Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kwon, Jaehoon | - |
dc.contributor.author | Lee, Hyunsoo | - |
dc.contributor.author | Natarajan, Logeshwaran | - |
dc.contributor.author | Shin, Sangyong | - |
dc.contributor.author | Choi, Jaeyoung | - |
dc.contributor.author | Lee, Sungho | - |
dc.contributor.author | Kim, Bumjoon J. | - |
dc.contributor.author | Lee, Hyunjoo | - |
dc.contributor.author | Lee, Young Jun | - |
dc.date.accessioned | 2025-03-22T15:30:18Z | - |
dc.date.available | 2025-03-22T15:30:18Z | - |
dc.date.created | 2025-03-19 | - |
dc.date.issued | 2025-03 | - |
dc.identifier.issn | 0897-4756 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152044 | - |
dc.description.abstract | Developing highly active and durable catalysts with minimal platinum (Pt) usage is crucial for reducing the overall cost of proton exchange membrane fuel cells (PEMFCs). Herein, we introduce a scalable synthesis of carbon-bound catalysts using the upcycling of the polystyrene (PS) polymer. Our approach utilizes solvent-based hyper-cross-linking techniques to spontaneously achieve a hierarchically porous structure in a single-step process. The Pt-loaded PS-derived carbon support features a mesopore structure that enhances mass transport for PEMFCs, despite a low Pt loading of 0.05 mgPt cm-2. The catalyst exhibits excellent durability, retaining 92.1% of its initial power density after 30,000 cycles, owing to its carbon-bound structure and the strong interaction between catalyst and support. In contrast, the power density of commercial Pt/C retains only 35.8% after 30,000 cycles. This approach offers a cost-efficient and sustainable method for upcycling PS polymers into highly durable cathode materials for PEMFCs. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Highly Durable Fuel Cells Using Carbon-Bound Platinum Alloy Catalysts Derived from Upcycled Polystyrene | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acs.chemmater.5c00103 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Chemistry of Materials, v.37, no.5, pp.2047 - 2057 | - |
dc.citation.title | Chemistry of Materials | - |
dc.citation.volume | 37 | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 2047 | - |
dc.citation.endPage | 2057 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | OXYGEN REDUCTION | - |
dc.subject.keywordPlus | CATHODE CATALYST | - |
dc.subject.keywordPlus | NEXT-GENERATION | - |
dc.subject.keywordPlus | GRAPHENE | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | PARTICLES | - |
dc.subject.keywordPlus | EVOLUTION | - |
dc.subject.keywordPlus | SUPPORT | - |
dc.subject.keywordPlus | LAYERS | - |
dc.subject.keywordPlus | IRON | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.