Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Im, Jong Min | - |
dc.contributor.author | Lim, Hyojun | - |
dc.contributor.author | Kim, Hyunjin | - |
dc.contributor.author | Kang, Yun Chan | - |
dc.contributor.author | Hwa, Yoon | - |
dc.contributor.author | Kim, Sang-Ok | - |
dc.date.accessioned | 2025-03-22T15:30:30Z | - |
dc.date.available | 2025-03-22T15:30:30Z | - |
dc.date.created | 2025-03-19 | - |
dc.date.issued | 2025-02 | - |
dc.identifier.issn | 2050-7488 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152047 | - |
dc.description.abstract | Bimetallic SnSb has significantly attracted attention as a Na-ion battery (SIB) anode owing to its higher theoretical capacity of 752 mA h g-1 compared to conventional hard carbon anodes. However, practical applications are hindered by substantial volume changes during sodiation/desodiation. Herein, a SnSb-based heterostructured anode (SnSb@C-SiOC) with high SnSb content (similar to 85%) is developed via two-step pyrolysis using SnSbOx@polydopamine precursors dispersed in silicone oil. The resulting SnSb yolk nanoparticles, encapsulated within a multi-functional C-SiOC bi-layered shell, facilitate rapid Na-ion transport and provide effective volume buffering during cycling for efficient electrochemical reactions and enhanced structural integrity. Post-mortem analyses reveal reversible crystalline phase transformations of SnSb with uniform elemental distributions, demonstrating the effectiveness of bi-layered shells. With superior mechanical robustness of the heterostructure confirmed by nanoindentation, the SnSb@C-SiOC anode delivers a high capacity of 445.6 mA h g-1 after 250 cycles at 2 A g-1, retaining 87.9% of its initial capacity and greatly outperforming pure SnSb. Additionally, a full cell combining the anode with a Na3V2(PO4)3 cathode shows promising cycle and rate performances, suggesting potential for practical applications. This study presents a viable approach for developing durable and efficient anode materials to advance SIBs and provide next-generation energy storage systems. | - |
dc.language | English | - |
dc.publisher | Royal Society of Chemistry | - |
dc.title | Rational design for enhanced mechanical and kinetic properties of SnSb-based yolk-shell heterostructure as long cycle-life, high-rate Na-ion battery anode | - |
dc.type | Article | - |
dc.identifier.doi | 10.1039/d4ta08119f | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Journal of Materials Chemistry A, v.13, no.8, pp.5777 - 5788 | - |
dc.citation.title | Journal of Materials Chemistry A | - |
dc.citation.volume | 13 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 5777 | - |
dc.citation.endPage | 5788 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001406803500001 | - |
dc.identifier.scopusid | 2-s2.0-85216272152 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | HIGH-PERFORMANCE ANODE | - |
dc.subject.keywordPlus | HIGH-RATE CAPABILITY | - |
dc.subject.keywordPlus | CARBON MICROSPHERES | - |
dc.subject.keywordPlus | STABLE ANODE | - |
dc.subject.keywordPlus | COMPOSITE | - |
dc.subject.keywordPlus | CAPACITY | - |
dc.subject.keywordPlus | OXIDE | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.