Full metadata record

DC Field Value Language
dc.contributor.authorIm, Jong Min-
dc.contributor.authorLim, Hyojun-
dc.contributor.authorKim, Hyunjin-
dc.contributor.authorKang, Yun Chan-
dc.contributor.authorHwa, Yoon-
dc.contributor.authorKim, Sang-Ok-
dc.date.accessioned2025-03-22T15:30:30Z-
dc.date.available2025-03-22T15:30:30Z-
dc.date.created2025-03-19-
dc.date.issued2025-02-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152047-
dc.description.abstractBimetallic SnSb has significantly attracted attention as a Na-ion battery (SIB) anode owing to its higher theoretical capacity of 752 mA h g-1 compared to conventional hard carbon anodes. However, practical applications are hindered by substantial volume changes during sodiation/desodiation. Herein, a SnSb-based heterostructured anode (SnSb@C-SiOC) with high SnSb content (similar to 85%) is developed via two-step pyrolysis using SnSbOx@polydopamine precursors dispersed in silicone oil. The resulting SnSb yolk nanoparticles, encapsulated within a multi-functional C-SiOC bi-layered shell, facilitate rapid Na-ion transport and provide effective volume buffering during cycling for efficient electrochemical reactions and enhanced structural integrity. Post-mortem analyses reveal reversible crystalline phase transformations of SnSb with uniform elemental distributions, demonstrating the effectiveness of bi-layered shells. With superior mechanical robustness of the heterostructure confirmed by nanoindentation, the SnSb@C-SiOC anode delivers a high capacity of 445.6 mA h g-1 after 250 cycles at 2 A g-1, retaining 87.9% of its initial capacity and greatly outperforming pure SnSb. Additionally, a full cell combining the anode with a Na3V2(PO4)3 cathode shows promising cycle and rate performances, suggesting potential for practical applications. This study presents a viable approach for developing durable and efficient anode materials to advance SIBs and provide next-generation energy storage systems.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleRational design for enhanced mechanical and kinetic properties of SnSb-based yolk-shell heterostructure as long cycle-life, high-rate Na-ion battery anode-
dc.typeArticle-
dc.identifier.doi10.1039/d4ta08119f-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.13, no.8, pp.5777 - 5788-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume13-
dc.citation.number8-
dc.citation.startPage5777-
dc.citation.endPage5788-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001406803500001-
dc.identifier.scopusid2-s2.0-85216272152-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusHIGH-RATE CAPABILITY-
dc.subject.keywordPlusCARBON MICROSPHERES-
dc.subject.keywordPlusSTABLE ANODE-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusOXIDE-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE