Full metadata record

DC Field Value Language
dc.contributor.authorKim, Changhyun-
dc.contributor.authorBae, Munseong-
dc.contributor.authorChoi, Minho-
dc.contributor.authorLee, Sangbin-
dc.contributor.authorLee, Myunghoo-
dc.contributor.authorKim, Chihyeon-
dc.contributor.authorJung, Hojoong-
dc.contributor.authorChung, Haejun-
dc.contributor.authorKwon, Hyounghan-
dc.date.accessioned2025-03-23T11:00:45Z-
dc.date.available2025-03-23T11:00:45Z-
dc.date.created2025-03-19-
dc.date.issued2025-02-
dc.identifier.issn2192-8606-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152066-
dc.description.abstractThin-film lithium niobate (TFLN) has emerged as a promising platform for integrated photonics due to its exceptional material properties. The application of freeform topology optimization to TFLN devices enables the realization of compact designs with complex functionalities and high efficiency. However, the stringent fabrication constraints of TFLN present significant challenges for optimization, particularly in nonlinear photonic devices. In this work, we propose an inverse design methodology that successfully addresses these challenges and demonstrates the development of an efficient freeform TFLN mode converter. The numerically optimized mode converter achieves a transmission efficiency of 67.60 % and a mode purity of 84.58 %. Experimental validation through nonlinear processes, including second harmonic generation and spontaneous parametric down-conversion, shows that the fabricated devices improve the efficiency of these processes by factors of two and three, respectively, compared to devices without freeform designs. The proposed inverse design framework provides a powerful tool for advancing the development of TFLN-based devices, with broad applicability to nonlinear and quantum photonics.-
dc.languageEnglish-
dc.publisherWALTER DE GRUYTER GMBH-
dc.titleFreeform thin-film lithium niobate mode converter for photon-pair generation-
dc.typeArticle-
dc.identifier.doi10.1515/nanoph-2024-0515-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNanophotonics-
dc.citation.titleNanophotonics-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85217796732-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryOptics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaOptics-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusINVERSE DESIGN-
dc.subject.keywordAuthorlithium niobate-
dc.subject.keywordAuthormode converter-
dc.subject.keywordAuthorinverse design-
dc.subject.keywordAuthortopology optimization-
dc.subject.keywordAuthorspontaneous parametric down conversion-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE