Full metadata record

DC Field Value Language
dc.contributor.authorEntifar, Siti Aisyah Nurmaulia-
dc.contributor.authorEntifar, Nisa Aqilla Ellenahaya-
dc.contributor.authorWibowo, Anky Fitrian-
dc.contributor.authorKim, Jung Ha-
dc.contributor.authorShara, Yulia-
dc.contributor.authorSaputro, Jonatan Martino Windi-
dc.contributor.authorKim, Han-Gyeol-
dc.contributor.authorKim, Jong-Oh-
dc.contributor.authorXie, Guohua-
dc.contributor.authorOh, Junghwan-
dc.contributor.authorKim, Soyeon-
dc.contributor.authorLim, Dong Chan-
dc.contributor.authorMoon, Myoung-Woon-
dc.contributor.authorKim, Min-Seok-
dc.contributor.authorKim, Yong Hyun-
dc.date.accessioned2025-03-23T12:30:17Z-
dc.date.available2025-03-23T12:30:17Z-
dc.date.created2025-03-19-
dc.date.issued2025-04-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152092-
dc.description.abstractIn this study, a highly stretchable and conductive hydrogel film composed of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was developed for application in wearable sensors, machine learning-based activity recognition, and hydrovoltaic energy generation. The optimized hydrogel exhibited a tensile strength of 0.391 MPa, an elongation at break of 303.8 %, a toughness of 0.525 MJ/m(3), a conductivity of 2.04 S/m, and a low electrical hysteresis of 0.101 % at 50 % strain. With a gauge factor of 1.034, the hydrogel accurately detected human motions and achieved 100 % classification accuracy in classifying movements using machine learning. In hydrovoltaic applications, 16 films connected in series generated 2.01 V, powering a light-emitting diode lamp. These results highlight the potential of the CMC-PVA-PEDOT:PSS-based hydrogel for next-generation wearable electronics and sustainable energy systems.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleExtremely-low electrical-hysteresis hydrogels for multifunctional wearable sensors and osmotic power generators-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.160971-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.509-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume509-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001441853700001-
dc.identifier.scopusid2-s2.0-85219718289-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordAuthorConductive Hydrogel-
dc.subject.keywordAuthorPEDOT:PSS-
dc.subject.keywordAuthorCellulose-
dc.subject.keywordAuthorHuman Motion Monitoring-
dc.subject.keywordAuthorHydrovoltaic Energy Generation-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE