Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jang, Jinha | - |
dc.contributor.author | Wang, Chongzhen | - |
dc.contributor.author | Kang, Gumin | - |
dc.contributor.author | Han, Cheolhee | - |
dc.contributor.author | Han, Jaekyeong | - |
dc.contributor.author | Shin, Jae-Sun | - |
dc.contributor.author | Ko, Sunghyun | - |
dc.contributor.author | Kim, Gihwan | - |
dc.contributor.author | Baek, Jaewon | - |
dc.contributor.author | Kim, Hee-Tak | - |
dc.contributor.author | Lee, Hochun | - |
dc.contributor.author | Park, Chan Beum | - |
dc.contributor.author | Seo, Dong-Hwa | - |
dc.contributor.author | Li, Yuzhang | - |
dc.contributor.author | Kang, Jiheong | - |
dc.date.accessioned | 2025-03-23T12:30:24Z | - |
dc.date.available | 2025-03-23T12:30:24Z | - |
dc.date.created | 2025-03-20 | - |
dc.date.issued | 2025-03 | - |
dc.identifier.issn | 2058-7546 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152094 | - |
dc.description.abstract | Developing high-safety Li-metal batteries (LMBs) with rapid rechargeability represents a crucial avenue for the widespread adoption of electrochemical energy storage devices. Realization of LMBs requires an electrolyte that combines non-flammability with high electrochemical stability. Although current electrolyte technologies have enhanced LMB cyclability, rational electrolyte fabrication capable of simultaneously addressing high-rate performance and safety remains a grand challenge. Here we report an electrolyte design concept to enable practical, safe and fast-cycling LMBs. We created miniature anion-Li+ solvation structures by introducing symmetric organic salts into various electrolyte solvents. These structures exhibit a high ionic conductivity, low desolvation barrier and interface stabilization. Our electrolyte design enables stable, fast cycling of practical LMBs with high stability (LiNi0.8Co0.1Mn0.1O2 cell (twice-excessed Li): 400 cycles) and high power density (pouch cell: 639.5 W kg-1). Furthermore, the Li-metal pouch cell survived nail penetration, revealing its high safety. Our electrolyte design offers a viable approach for safe, fast-cycling LMBs. | - |
dc.language | English | - |
dc.publisher | NATURE PUBLISHING GROUP | - |
dc.title | Miniature Li+ solvation by symmetric molecular design for practical and safe Li-metal batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.1038/s41560-025-01733-9 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Nature Energy | - |
dc.citation.title | Nature Energy | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.scopusid | 2-s2.0-86000325976 | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | SOLID-STATE ELECTROLYTES | - |
dc.subject.keywordPlus | LITHIUM | - |
dc.subject.keywordPlus | INTERPHASE | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.