Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lung, Quang Nhat Dang | - |
dc.contributor.author | Chu, Rafael Jumar | - |
dc.contributor.author | Yeon, Eungbeom | - |
dc.contributor.author | Kim, Yeonhwa | - |
dc.contributor.author | Madarang, May Angelu | - |
dc.contributor.author | Choi, Won Jun | - |
dc.contributor.author | Jung, Daehwan | - |
dc.date.accessioned | 2025-03-23T12:30:47Z | - |
dc.date.available | 2025-03-23T12:30:47Z | - |
dc.date.created | 2025-03-19 | - |
dc.date.issued | 2025-02 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152100 | - |
dc.description.abstract | 2D materials such as graphene hold significant potential for optoelectronic applications due to their unique surface properties and strong light-matter interaction. Despite the promise, achieving high-performance photonic devices using 2D materials alone remains challenging, and therefore, integrating 2D materials with different dimensional semiconductors has emerged as an alternative approach to enhance device functionality. Here, p-type graphene/InAs quantum dot (QD)/n-type GaAs mixed-dimensional heterojunctions are demonstrated for 1.3 mu m light-emitting diodes (LEDs) by using the p-graphene as an ultrathin hole injection layer. These ultrathin hybrid devices show 800 x stronger electroluminescence output powers than the reference LEDs without p-graphene. Energy band alignments at the heterojunction interface are also investigated by measuring UV photoemission spectroscopy to elucidate electrical characteristics. The novel hybrid 2D p-graphene/0D QD/n-GaAs light-emitting diodes open up new ways for efficient ultrathin nanoscale light-emitting optoelectronic devices. | - |
dc.language | English | - |
dc.publisher | John Wiley and Sons Ltd | - |
dc.title | p-Graphene/Quantum Dot/n-GaAs Mixed-Dimensional Heterostructure Junction for Ultrathin Light-Emitting-Diodes | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/admi.202401011 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Advanced Materials Interfaces | - |
dc.citation.title | Advanced Materials Interfaces | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.scopusid | 2-s2.0-85219563672 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | SUBSTRATE | - |
dc.subject.keywordAuthor | epitaxy growth | - |
dc.subject.keywordAuthor | graphene | - |
dc.subject.keywordAuthor | heterojunction | - |
dc.subject.keywordAuthor | hybrid | - |
dc.subject.keywordAuthor | LED | - |
dc.subject.keywordAuthor | quantum dot | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.