Full metadata record

DC Field Value Language
dc.contributor.authorHong, Ilkwon-
dc.contributor.authorHa, Junhyoung-
dc.date.accessioned2025-03-24T01:00:12Z-
dc.date.available2025-03-24T01:00:12Z-
dc.date.created2025-03-19-
dc.date.issued2025-03-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152102-
dc.description.abstractIn this study, we rediscovered the framework of generative adversarial networks (GANs) as a solver for calibration problems without data correspondence. When data correspondence is not present or loosely established, the calibration problem becomes a parameter estimation problem that aligns the two data distributions. This procedure is conceptually identical to the underlying principle of GAN training in which networks are trained to match the generative distribution to the real data distribution. As a primary application, this idea is applied to the hand-eye calibration problem, demonstrating the proposed method's applicability and benefits in complicated calibration problems.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleGenerative Adversarial Networks for Solving Hand-Eye Calibration Without Data Correspondence-
dc.typeArticle-
dc.identifier.doi10.1109/LRA.2025.3533470-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Robotics and Automation Letters, v.10, no.3, pp.2494 - 2501-
dc.citation.titleIEEE Robotics and Automation Letters-
dc.citation.volume10-
dc.citation.number3-
dc.citation.startPage2494-
dc.citation.endPage2501-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001411912800004-
dc.identifier.scopusid2-s2.0-85216346016-
dc.relation.journalWebOfScienceCategoryRobotics-
dc.relation.journalResearchAreaRobotics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSIMULTANEOUS ROBOT-WORLD-
dc.subject.keywordAuthorCalibration-
dc.subject.keywordAuthorGenerative adversarial networks-
dc.subject.keywordAuthorTraining-
dc.subject.keywordAuthorGenerators-
dc.subject.keywordAuthorProbability density function-
dc.subject.keywordAuthorParameter estimation-
dc.subject.keywordAuthorRobots-
dc.subject.keywordAuthorNoise measurement-
dc.subject.keywordAuthorMathematical models-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorCalibration without data correspondence-
dc.subject.keywordAuthorgenerative adversarial networks (GANs)-
dc.subject.keywordAuthorhand-eye calibration-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE