Full metadata record

DC Field Value Language
dc.contributor.authorHeo,Cheol Ho-
dc.contributor.authorYeo, Ki Baek-
dc.contributor.authorChae, Minjung-
dc.contributor.authorBak, Seon Young-
dc.contributor.authorChoi, Hyeon Jin-
dc.contributor.authorJeong, Sohyeon-
dc.contributor.authorChoi, Nakwon-
dc.contributor.authorKang, Seung-Kyun-
dc.contributor.authorJun, Sang Ho-
dc.contributor.authorOk, Myoung Ryul-
dc.contributor.authorKim, So Yeon-
dc.date.accessioned2025-04-08T09:00:41Z-
dc.date.available2025-04-08T09:00:41Z-
dc.date.created2025-04-04-
dc.date.issued2025-04-
dc.identifier.issn1742-7061-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152185-
dc.description.abstractOptimizing cell-matrix interactions for effective bone regeneration remains a significant hurdle in tissue engineering. This study presents a novel approach by developing a human mesenchymal stem cells (hMSCs)-embedded 3D aligned collagen for enhanced bone regeneration. A one-step mechanical strain was applied to a mixture of hMSCs and collagen, producing an hMSC-embedded, aligned 3D collagen hydrogel patch that mimics the natural bone matrix. Notably, the hMSCs embedded in the aligned collagen spontaneously differentiated into osteoblasts without external inducing reagents. Immunofluorescence analysis revealed that the BMP2-smad1/5 signaling pathway, critical for osteogenic differentiation, were activated by aligned collagen. In vivo experiments using a calvarial defect model confirmed that this approach effectively promotes new bone formation, starting centrally within the defect rather than from the edges adjacent to the existing bone. Our findings suggest that this simple method of pre-straining to create aligned 3D collagen embedded with hMSCs holds promise as a novel cell therapy platform for bone regeneration.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleSpontaneous bone regeneration achieved through one-step alignment of human mesenchymal stem cell-embedded collagen-
dc.typeArticle-
dc.identifier.doi10.1016/j.actbio.2025.03.007-
dc.description.journalClass1-
dc.identifier.bibliographicCitationActa Biomaterialia, v.196, pp.136 - 151-
dc.citation.titleActa Biomaterialia-
dc.citation.volume196-
dc.citation.startPage136-
dc.citation.endPage151-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001460932500001-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusOSTEOGENIC DIFFERENTIATION-
dc.subject.keywordPlusPRE-OSTEOBLASTS-
dc.subject.keywordPlusBIOMATERIALS-
dc.subject.keywordPlusINTEGRIN-
dc.subject.keywordPlusFIBERS-
dc.subject.keywordPlusNANOFIBERS-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusSCAFFOLDS-
dc.subject.keywordPlusHYDROGELS-
dc.subject.keywordAuthorBone regeneration cell therapy-
dc.subject.keywordAuthorMesenchymal stem cells (MSC)-
dc.subject.keywordAuthorAligned 3D collagen-
dc.subject.keywordAuthorIntegrin-
dc.subject.keywordAuthorCalvarial defect model-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE