Full metadata record

DC Field Value Language
dc.contributor.authorPandey, Sudeshana-
dc.contributor.authorGhimire, Mukesh-
dc.contributor.authorKim, Taemin-
dc.contributor.authorJung, Mooyoung-
dc.contributor.authorAsaithambi, Sankaiya-
dc.contributor.authorDong, Wan Jae-
dc.contributor.authorSon, Ji-Won-
dc.contributor.authorYun, Yong Ju-
dc.contributor.authorJun, Yongseok-
dc.date.accessioned2025-04-09T07:30:09Z-
dc.date.available2025-04-09T07:30:09Z-
dc.date.created2025-04-09-
dc.date.issued2025-03-
dc.identifier.issn2452-2627-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152194-
dc.description.abstractElectrocatalytic water splitting is a key process for sustainable energy generation, but its large-scale implementation is hindered by the slow kinetics of the hydrogen evolution (HER) and oxygen evolution reactions (OER). This study introduces a design strategy for two-dimensional (2-D) MXene and porous MXene (P-MXene) nanostructures to enhance water splitting efficiency. By employing advanced etching and structural engineering, P-MXene nano structures with optimized porosity and increased surface area are fabricated, which improving the active site density and promoting rapid ion diffusion. Electrochemical characterizations demonstrate significantly reduced overpotentials and enhanced current densities for both HER and OER, consistently, P-MXene catalyst resulted in the overpotential reduction suggestively by 45 mV for HER and 110 mV for OER at anodic and cathodic current density of 10 m A cm-2, compared to MXene, surpassing traditional noble-metal catalysts. Furthermore, the P-MXene/NF device delivers the stable current density of 10 mA cm-2 for overall water splitting at 1.54 V and retained 92.2 % efficiency after 24 h. This work highlights the potential of porous MXene nanostructures in electrocatalysis, offering a scalable approach for the development of bifunctional electrocatalysts for next-generation energy conversion systems.-
dc.languageEnglish-
dc.publisherElsevier-
dc.titleSynthesis of porous MXene for efficient bifunctional electrocatalysis in overall water splitting: Hydrogen and oxygen evolution reactions-
dc.typeArticle-
dc.identifier.doi10.1016/j.flatc.2025.100837-
dc.description.journalClass1-
dc.identifier.bibliographicCitationFlatChem, v.50-
dc.citation.titleFlatChem-
dc.citation.volume50-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001441269300001-
dc.identifier.scopusid2-s2.0-85219110369-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusTI3C2-
dc.subject.keywordAuthorMXene-
dc.subject.keywordAuthorPorous MXene-
dc.subject.keywordAuthorHydrogen evolution reaction-
dc.subject.keywordAuthorOxygen evolution reaction-
dc.subject.keywordAuthorWater electrolysis-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE