Full metadata record

DC Field Value Language
dc.contributor.authorKim, Tae Heon-
dc.contributor.authorKim, Dong-Gyu-
dc.contributor.authorKim, Sang-Hyun-
dc.contributor.authorKim, Tae-Kyung-
dc.contributor.authorSong, Ki-Cheol-
dc.contributor.authorLEE, YEON HEE-
dc.contributor.authorPark, Jin-Seong-
dc.date.accessioned2025-04-09T08:00:45Z-
dc.date.available2025-04-09T08:00:45Z-
dc.date.created2025-04-09-
dc.date.issued2025-03-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152205-
dc.description.abstractIn-Ga-Zn-O (IGZO) thin-film transistors (TFTs) fabricated via atomic layer deposition (ALD) show promise for future display applications. However, they face challenges related to bias stability and hydrogen vulnerability. We propose an N doping strategy for SiO2 gate insulators (GI) using nitrous oxide (N2O) plasma reactants to control the active layer/GI interface and GI bulk properties of top-gate bottom-contact (TG-BC) IGZO TFTs. Increasing the N content in the SiO2 from 0.7 to 2.2 at.% by adjusting N2O plasma power from 100 to 300 W resulted in a 10-fold increase in trap densities within the interface and IGZO bulk region. Positive bias temperature stress (PBTS) stability exhibited a U-shaped threshold voltage (V-TH) shift from -4.1 to 4.9 V, driven by H concentration in the GI and interface trap densities. After H-2 annealing, devices demonstrated improved H resistivity, with the V-TH shift reduced from -2.1 to 0.0 V, attributed to H being chemically trapped by N atoms with lone pairs or unbonded electrons. Furthermore, a hybrid GI structure combining N2O plasma powers of 150 and 300 W further enhanced PBTS stability and H resistivity by 60% and 71%, respectively, demonstrating the effectiveness of this approach.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleNitrogen Doping Strategy in SiO2 Insulators for Stable and Hydrogen-Resistant ALD-IGZO TFTs-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.4c22748-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.17, no.13, pp.19928 - 19937-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume17-
dc.citation.number13-
dc.citation.startPage19928-
dc.citation.endPage19937-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001449448000001-
dc.identifier.scopusid2-s2.0-105000526352-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorN2O PlasmaReactant-
dc.subject.keywordAuthorNitrogen Doping-
dc.subject.keywordAuthorPlasma-enhanced AtomicLayer Deposition-
dc.subject.keywordAuthorHydrogen-Resistance-
dc.subject.keywordAuthorIGZO-
dc.subject.keywordAuthorThin Film Transistor-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE