Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Tae Heon | - |
dc.contributor.author | Kim, Dong-Gyu | - |
dc.contributor.author | Kim, Sang-Hyun | - |
dc.contributor.author | Kim, Tae-Kyung | - |
dc.contributor.author | Song, Ki-Cheol | - |
dc.contributor.author | LEE, YEON HEE | - |
dc.contributor.author | Park, Jin-Seong | - |
dc.date.accessioned | 2025-04-09T08:00:45Z | - |
dc.date.available | 2025-04-09T08:00:45Z | - |
dc.date.created | 2025-04-09 | - |
dc.date.issued | 2025-03 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/152205 | - |
dc.description.abstract | In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) fabricated via atomic layer deposition (ALD) show promise for future display applications. However, they face challenges related to bias stability and hydrogen vulnerability. We propose an N doping strategy for SiO2 gate insulators (GI) using nitrous oxide (N2O) plasma reactants to control the active layer/GI interface and GI bulk properties of top-gate bottom-contact (TG-BC) IGZO TFTs. Increasing the N content in the SiO2 from 0.7 to 2.2 at.% by adjusting N2O plasma power from 100 to 300 W resulted in a 10-fold increase in trap densities within the interface and IGZO bulk region. Positive bias temperature stress (PBTS) stability exhibited a U-shaped threshold voltage (V-TH) shift from -4.1 to 4.9 V, driven by H concentration in the GI and interface trap densities. After H-2 annealing, devices demonstrated improved H resistivity, with the V-TH shift reduced from -2.1 to 0.0 V, attributed to H being chemically trapped by N atoms with lone pairs or unbonded electrons. Furthermore, a hybrid GI structure combining N2O plasma powers of 150 and 300 W further enhanced PBTS stability and H resistivity by 60% and 71%, respectively, demonstrating the effectiveness of this approach. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Nitrogen Doping Strategy in SiO2 Insulators for Stable and Hydrogen-Resistant ALD-IGZO TFTs | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsami.4c22748 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, v.17, no.13, pp.19928 - 19937 | - |
dc.citation.title | ACS Applied Materials & Interfaces | - |
dc.citation.volume | 17 | - |
dc.citation.number | 13 | - |
dc.citation.startPage | 19928 | - |
dc.citation.endPage | 19937 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001449448000001 | - |
dc.identifier.scopusid | 2-s2.0-105000526352 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | ATOMIC LAYER DEPOSITION | - |
dc.subject.keywordPlus | FILMS | - |
dc.subject.keywordAuthor | N2O PlasmaReactant | - |
dc.subject.keywordAuthor | Nitrogen Doping | - |
dc.subject.keywordAuthor | Plasma-enhanced AtomicLayer Deposition | - |
dc.subject.keywordAuthor | Hydrogen-Resistance | - |
dc.subject.keywordAuthor | IGZO | - |
dc.subject.keywordAuthor | Thin Film Transistor | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.