Full metadata record

DC Field Value Language
dc.contributor.authorKim, Yong Soo-
dc.contributor.authorJeong, Yeongkon-
dc.contributor.authorAn, Young Jun-
dc.contributor.authorYu, Byung Deok-
dc.contributor.authorLee, Ju Han-
dc.contributor.authorJhon, Young Min-
dc.date.accessioned2025-04-09T08:30:57Z-
dc.date.available2025-04-09T08:30:57Z-
dc.date.created2025-04-09-
dc.date.issued2025-03-
dc.identifier.issn1557-1955-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152230-
dc.description.abstractLocalized surface plasmon resonance (LSPR) is a phenomenon that confines and enhances electromagnetic fields at the nanoscale and has been studied theoretically and experimentally in various nanostructured antennas. Among them, the bowtie nanoantenna maximizes the LSPR effect by creating a nanogap at the sharp opposing vertices of two facing triangular structures. In addition, the unique geometric design of a bowtie nanoantenna enables flexible customization for a wide range of applications. In this study, a nanoantenna was designed to enhance the infrared driving laser intensity in high-order harmonic generation (HHG). This study aimed to maximize the E-field enhancement with an LSPR resonance wavelength around 800 nm range while improving the thermal endurance of the antenna using a diamond substrate with exceptionally high thermal conductivity. Finite element method simulations for electromagnetic wave (EMW) and heat transfer were conducted using COMSOL Multiphysics, leading to the determination of optimal geometric parameters. The LSPR resonance wavelength was 840 nm with an E-field enhancement of 710 when the antenna width was 100 nm, height 200 nm, nanogap 10 nm, period 250 nm, and thickness 30 nm. Furthermore, the peak temperature at the nanogap of the bowtie antenna was 3297 K, which is 2349 K lower than the value reported in our previous study. The proposed optimized parameters suggest that the nanoantenna can withstand higher laser intensities without structural failure, enabling the generation of high-power, ultrahigh-order harmonics.-
dc.languageEnglish-
dc.publisherSpringer Verlag-
dc.titleOptimization of Au Bowtie Nanoantenna Array Considering Both Field Enhancement and Thermal Endurance for High-order Harmonic Generation-
dc.typeArticle-
dc.identifier.doi10.1007/s11468-025-02910-y-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPlasmonics-
dc.citation.titlePlasmonics-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105000847051-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusSURFACE-PLASMON RESONANCE-
dc.subject.keywordPlusMOLECULE FLUORESCENCE-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusRAMAN-SCATTERING-
dc.subject.keywordPlusHEAT-CAPACITY-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusULTRAVIOLET-
dc.subject.keywordPlusSHAPE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordAuthorBowtie nanoantenna-
dc.subject.keywordAuthorLocalized surface plasmon resonance-
dc.subject.keywordAuthorField enhancement-
dc.subject.keywordAuthorResonant wavelength-
dc.subject.keywordAuthorHeat transfer-
dc.subject.keywordAuthorHigh-order harmonic generation-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE