Full metadata record

DC Field Value Language
dc.contributor.authorMoon, Hyunseok-
dc.contributor.authorRyou, Myeong-Hwa-
dc.contributor.authorPark, Anseong-
dc.contributor.authorLi, Bo-Quan-
dc.contributor.authorKim, Ha Neul-
dc.contributor.authorPark, Namjun-
dc.contributor.authorLee, Eunbyoul-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorHuang, Jia-Qi-
dc.contributor.authorYim, Taeeun-
dc.contributor.authorLee, Won Bo-
dc.contributor.authorLee, Sang-Young-
dc.date.accessioned2025-04-09T09:00:13Z-
dc.date.available2025-04-09T09:00:13Z-
dc.date.created2025-04-09-
dc.date.issued2025-04-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152236-
dc.description.abstractElectrode passivation limits the reversibility of lithium-sulfur (Li-S) batteries. Pivoting from the prevailing approaches that focus on electrode active materials and electrolytes, herein, we introduce a class of S electrode binders based on soft acidic-hard basic (SAHB) ionomers. The SAHB binder contains a soft cation (tetraallyl ammonium ion, TA+) paired with a hard counteranion (nitrate, NO3 -), allowing matched interactions with Li polysulfides (LiPS) via soft acid-soft base (TA+-S x 2-) and hard base-hard acid (NO3 --Li+) pairings. This intermolecular coupling retards LiPS diffusion, promoting three-dimensional granular Li sulfide (Li2S) growth, guided by a high Damkohler number (Da). Consequently, the SAHB binder enables a Li-S cell to achieve a high specific capacity of 1545 mAh gsulfur -1 (corresponding to 92.3% S utilization) and stable capacity retention (71.5% after 300 cycles at a current density of 1 C), outperforming previously reported S electrode binders.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titlePromoting Granular Lithium Sulfide Growth by Soft Acidic-Hard Basic Ionomer Binder for Lithium-Sulfur Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.4c03522-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters, v.10, no.4, pp.1654 - 1663-
dc.citation.titleACS Energy Letters-
dc.citation.volume10-
dc.citation.number4-
dc.citation.startPage1654-
dc.citation.endPage1663-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001444264800001-
dc.identifier.scopusid2-s2.0-86000489509-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordPlusBEHAVIOR-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE