Full metadata record

DC Field Value Language
dc.contributor.authorLee, Choongseop-
dc.contributor.authorYang, Geunbo-
dc.contributor.authorBaek, Jaewoo-
dc.contributor.authorPark, Yuntae-
dc.contributor.authorCheon, Mingyu-
dc.contributor.authorPark, Jongkil-
dc.contributor.authorPark, Cheolsoo-
dc.date.accessioned2025-04-09T09:30:55Z-
dc.date.available2025-04-09T09:30:55Z-
dc.date.created2025-04-09-
dc.date.issued2025-02-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152255-
dc.description.abstractSpiking neural networks, known for mimicking the brain's functionality resulting in efficient algorithms, are gaining attention across various problems and applications. However, their potential in regression tasks remains relatively unexplored. This study focuses on leveraging the spiking neural architecture in conjunction with Fourier analysis and support vector regression to estimate heart rates from electrocardiogram signal. We evaluated the regression errors of our model using three distinct elctrocardiogram datasets and assessed its performance on neuromorphic hardware by embedding spike-based layers. Our findings reveal that, compared to the conventional deep learning models, the proposed spiking neural system achieves a computational efficiency improvement while maintaining the competitive regression accuracy. Finally, we discuss the regression performance, energy efficiency, biological plausibility, and potential applications of the proposed neuromorphic system.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleRegression Model Employing Spiking Neural Network for Bio-Signal Analysis With Hardware Integration-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2025.3544379-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Access, v.13, pp.41456 - 41470-
dc.citation.titleIEEE Access-
dc.citation.volume13-
dc.citation.startPage41456-
dc.citation.endPage41470-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001446493800042-
dc.identifier.scopusid2-s2.0-105001061785-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.type.docTypeArticle-
dc.subject.keywordPlusTIMING-DEPENDENT PLASTICITY-
dc.subject.keywordPlusNEURONS-
dc.subject.keywordAuthorNeuromorphics-
dc.subject.keywordAuthorElectrocardiography-
dc.subject.keywordAuthorHardware-
dc.subject.keywordAuthorBiological system modeling-
dc.subject.keywordAuthorEncoding-
dc.subject.keywordAuthorBiology-
dc.subject.keywordAuthorAccuracy-
dc.subject.keywordAuthorRegression analysis-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorComputational modeling-
dc.subject.keywordAuthorBiomedical signal processing-
dc.subject.keywordAuthorbio-inspired computing-
dc.subject.keywordAuthorelectrocardiography-
dc.subject.keywordAuthorembedded software-
dc.subject.keywordAuthorfast Fourier transforms-
dc.subject.keywordAuthorHebbian theory-
dc.subject.keywordAuthorneuromorphics-
dc.subject.keywordAuthorregression analysis-
dc.subject.keywordAuthorsupport vector machines-
dc.subject.keywordAuthorspiking neural networks-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE